/H Managing HPC Software
/ Complexity with Spack

CARLA25 DevOps School

September 22, 2025 a =

Caetano Melone

Modern scientific codes are built from hundreds of small,
complex pieces

“Just when we’re starting to solve the problem of how to create software using reusable parts, it
founders on the nuts-and-bolts problems outside the software itself.”

P. DuBois &T. Epperly. Why Johnny Can’t Build. Scientific Programming. Sep/Oct 2003.

* Pros) - ~
* Teams can and must reuse each others’ work ¢ (l
* Teams write less code, meet deliverables faster 7\/ '

e Cons . - G

« Teams must ensure that components work together Build-time incompatibility; fail fast

* |Integration burden increases with each additional library
* |Integration must be repeated with each update to components

* Components must be vetted!

* Managing changes over time is becoming intractable
Appears to work; subtle errors later

M Lawrence Livermore = HPSF
National Laboratory ey LLNL-PRES-2011458

Modern scientific codes rely on icebergs of dependency libraries

‘‘‘‘‘‘

31 packages,
69 dependencies

nnnnnnn

ppppppppppppp

cnake.

!l

' ~{—TF pe— e T~ — —————a . \ '
et | ’p“\ : p,,,,mm,a,mmr“ s ‘
7 \ X
7]
Al S/ =

71 packages
MFEM: P
ZINST f“‘!h"' ¢
N \v/ Z Z
- e S [ET

LBANN: Neural Nets forHPC 188 dependencies
‘r//['“r‘—a
o DY
\‘]\\‘l | ']

r-condop: \"‘
R Genome Data Analysis Tools (

.

Modern software integrates open source
and internal packages

_

Types of Packages

LLNL, Internal [LLNL, Open Source] External, Open Source

* Most modern software uses tons of open source

* We cannotreplace all these OSS components with our own
* How do we put them all together effectively?
* Do you have to integrate this by hand?

Lawrence Livermore = |-| p5|=
[— -PRES-
@ National Laboratory g LLNL-PRES-2011458 ,

.

Some common (but questionable) assumptions made by
package managers

* 1:1 relationship between source code and binary (per platform)
e Good for reproducibility (e.g., Debian)
* Bad for performance optimization

* Binaries should be as portable as possible
* What most distributions do
* Again, bad for performance

* Toolchain is the same across the ecosystem
* One compiler, one set of runtime libraries
 Orno compiler (forinterpreted languages)

M Lawrence Livermore =228 HPSF
——

National Laboratory CONE S e 5

e

High Performance Computing (HPC) violates
many of these assumptions

e Often build many variants of the same package <+ Codeistypically distributed as source

- Developers’ builds may be very different * With exception of vendor libraries, compilers

Rely heavily on system packages
* Need to use optimized libraries that come

- with machines
* Mustmake effective use of the hardware * Need to use host GPU libraries and network

* Many first-time builds when machines are new

 Code is optimized for the processor and GPU

 Can make 10-100x perf difference

Multi-language
e C, C++, Fortran, Python, others
allin the same ecosystem

#OAK RIDGE

- ' OLT= Ol | ‘('\}_}N THER
0 B ——
AMDZ1

Lawrence Livermore

National Lab Oak Ridge National Lab . RIKEN Argonne National Lab
AMD Zen / MI300A AMD Zen / MI250X Fujitsu Intel / Xe

M Lawrence Livermore == HPSF

-

Spack enables software distribution for HPC

No installation required: clone and go

$ git clone --depth=2 https://github.com/spack/spack
$ spack install hdf5

Simple syntax enables complexinstalls

$ spack install hdf5@1.10.5 $ hdf5@1.10.5 cppflags="-03 -g3"
$ spack install hdf5@1.10.5 %clang@6.0 $ spack install hdf5@1.10.5 target=haswell
$ spack install hdf5@1.10.5 +threadssafe $ spack install hdf5@1.10.5 +mpi “mpich@3.2

* Packages are parameterized, so that users can easily tweak and tune configuration

* Ease of use of mainstream tools, with flexibility needed for HPC

M Lawrence Livermore == HPSF
=

National Laboratory CONE S e 7

W

Who can use Spack?

People who want to use or distribute software for HPC!

1. End Users of HPC Software
* Installand run HPC applications and tools

2. HPC Application Teams
 Manage third-party dependency libraries

3. Package Developers
 People who want to package their own software for distribution

4. User supportteams at HPC Centers
« People who deploy software for users at large HPC sites

M Lawrence Livermore =2 HPSFE
National Laboratory ey LLNL-PRES-2011458 .

What’s a package manager?

e Manages package installation
e Manages dependency relationships
e May drive package-level build

* Spackis a package manager
* Does notreplace a CMake/Autotools

Package Manager

* Packages built by Spack can have any systems
build system they want
* Spack manages dependencies High Level Build * CMake, Autotools

e Handle library abstractions

* Drives package-level build systems System G te Makefil t
* Generate Makefiles, etc.

e Ensures consistent builds

* Determining magic configure lines

takes time Low Level Build
* Spackisacache of recipes System

e Make, Ninja
* Handles dependencies among
commands in a single build

Lawrence Livermore = HPSF
|2 Rationa Laboratory s - LLNL-PRES-2011458 .

Spackis not the only HPC/Al/data science package manager

A-/- “ - 1. Functional Package Managers

* Nix https://nixos.org
Guix e Guix https://hpc.guix.info
v s 2. Build-from-source Package Managers
aap iy « Homebrew, LinuxBrew https://brew.sh
f I .i] * MacPorts https://www.macports.org
.;_. LY * Gentoo https://gentoo.org
< Other HPC tools:
EEEE Easybuild
* Aninstallation tool for HPC https:// ild.i
EasyBuiLp * Focused on HPC system administrators — different package model from Spack
« Relies on a fixed software stack— harder to tweak recipes for experimentation
CONDA - Conda/Mamba / Pixi https://conda.i
* Very popular binary package ecosystem for data science https://mamba.readth i
* Not targeted at HPC; generally, has unoptimized binaries https://prefix.dev
Lawrence Livermore m:-:u HPSF NS ST 10

National Laboratory g

https://nixos.org/
https://hpc.guix.info/
https://hpc.guix.info/
https://brew.sh/
https://www.macports.org/
https://gentoo.org/
https://easybuild.io/
https://conda.io/
https://mamba.readthedocs.io/
https://prefix.dev/

.

What about containers?

* Containers provide a great way to reproduce and distribute an
already-built software stack

« Someone needs to build the container!
* Not trivial
* Containerized applications still have hundreds of dependencies

* Using the OS package manager inside a container is insufficient
* Most binaries are built unoptimized
e Generic binaries, not optimized for specific architectures

* HPC containers may need to be rebuilt to support many
different hosts

e Not clear that we can ever build one container for all facilities

SHIFTER

M Lawrence Livermore =228 HPSF
——

National Laboratory CONE S e n

Spack provides a spec syntax to describe customized
package configurations

S spack install mpileaks unconstrained
S spack install mpileaks@3.3 @ custom version
S spack install mpileaks@3.3 %gcc@4.7.3 % custom compiler

S spack install mpileaks@3.3 %gcc@4.7.3 +threads +/- build option
S spack install mpileaks@3.3 cppflags="-03 —g3" set compiler flags

S spack install mpileaks@3.3 target=cascadelake set target microarchitecture

S spack install mpileaks@3.3 "mpich@3.2 %gcc@4.9.3 " dependency constraints

* Each expressionis a spec for a particular configuration
* Each clause adds a constraint to the spec
e Constraints are optional — specify only what you need.
 Customize install on the command line!

e Spec syntaxis recursive
* Full control over the combinatorial build space

M Lawrence Livermore =228 HPSF
——

National Laboratory CONE S e 12

Spack packages are parameterized using the spec syntax

Python DSL defines many ways to build

from spack import *

class Kripke(CMakePackage):
"""Kripke is a simple, scalable, 3D Sn deterministic particle transport mini-app."""

homepage = "https://computation.linl.gov/projects/co-design/kripke"
url ="https://computation.linl.gov/projects/co-design/download/kripke-openmp-1.1.tar.gz"

version(‘1.2.3’, sha256="'3f7f2eef0d1ba5825780d626741eb0b3f026a096048d7ec4794d2a7 dfbe2b8ab’)
version(‘1.2.2’, sha256="'eaf9ddf562416974157b34d00c3a1c880fc5296fce2aa2 efa039a86e0976f3a3’)
version('1.1’, sha256='232d74072fc7b848fa2adc8albc839ae8fb5f96d50224186601f55554 a2 5f64a’)

variant('mpi', default=True, description="'Build with MPI.’)
variant('openmp’, default=True, description="'Build with OpenMP enabled.’)

depends_on('mpi', when="+mpi’)
depends_on('cmake@3.0:', type='build’)

def cmake_args(self):
return [
-DENABLE_OPENMP=%s" % ('+openmp’ in self.spec),
-DENABLE_MPI=%s' % ('+mpi’ in self.spec),
]

def install(self, spec, prefix):
mkdirp(prefix.bin)
install('../spack-build/kripke', prefix.bin)

One package.py file per software project!

M Lawrence Livermore == HPSF
=

National Laboratory CONE S e

=S

L

S—

\

Base package
(CMake support)

Metadata at the class level

Versions

Variants (build options)

Dependencies
(same spec syntax)

Install logic
in instance methods

Don’t typically need install() for
CMakePackage, but we can work
around codes thatdon’t have it.

13

Conditional variants simplify packages

CudaPackage: a mix-in for packages that use CUDA

class CudaPackage(PackageBase):

variant('cuda’, default= ’ cuda is a variant (build option)
description="Build with CUDA")

variant('cuda_arch',
description="'CUDA architecture’', cuda_arch is only present
values=any_combination_of(cuda_arch_values), if cuda is enabled
when="+cuda')

dependency on cuda, but only
depends_on('cuda', when="+cuda') if cuda is enabled

depends_on('cuda@9.0: ", when="cuda_arch=70")
depends_on('cuda@9.0: "', when="cuda_arch=72") constraints on cuda version
depends_on('cuda@10.0: ", when="cuda_arch=75")

conflicts('%gcc@9:', when="+cuda Acuda@:10.2.89 target=x86_64:") cxﬂnpﬂerjupponforx86_64
conflicts('%gcc@9:', when='+cuda Acuda@:1@.1.243 target=ppcodle: ') and ppcbale

There is a lot of expressive power in the Spack package DSL

B Lawrence Livermore =90 pipcp

National Laboratory sy " LLNL-PRES-2011458 14

Spack Specs can constrain versions of dependencies

/p mpi
/ libdwarf

T
11path —
COLEPARN —p dyninst libelf

S spack install mpileaks %intel@12.1 M libelf@0.8.12

mp1ileaks

= Spack ensures one configuration of each library per DAG
— Ensures ABI consistency.
— User does not need to know DAG structure; only the dependency names.

= Spack can ensure that builds use the same compiler, or you can mix
— Working on ensuring ABI compatibility when compilers are mixed.

M Lawrence Livermore e HPSF
& National Laboratory LLNL-PRES-2011458 10

Spack handles ABl-incompatible, versioned interfaces like MPI

mpi

mpileaks

—~— libdwarf

11path _—V B
COLPAEN Il Gyninst _»

libelf

= mpilis avirtual dependency

= |nstall the same package built with two different MPl implementations:

S spack install mpileaks *mvapich@1.9 S spack install mpileaks “openmpi@1.4:

= Let Spack choose MPlimplementation, as long as it provides MPI 2 interface:

S spack install mpileaks *"mpi@2

M Lawrence Livermore e HPSF
& National Laboratory LLNL-PRES-2011458 10

Concretization fills in missing configuration details

when the user is not explicit

mpileaks ~callpath@1.0+debug Mibelf@0.8.11

mpileaks

\

callpath@l.0
+debug

e

mpi dyninst

Concretize

@ 9ZI)eW.ION

\

libdwarf

/

libelf@0.8.11

Abstract, normalized spec
with some dependencies.

M Lawrence Livermore == HPSF

mpileaks@2.3
%gcc@4.7.3
=linux-ppc64

\

callpath@l.0
%gcc@a4.7.3+debug
=linux-ppc64

\

mpich@3.0.4 dyninst@8.1.2 Store
%gcc@4.7.3 %gcc@4.7.3
=linux-ppc64 =linux-ppc64

libdwarf@20130729

%gcc@4.7.3
=linux-ppc64

/

libelf@0.8.11
%gcc@4.7.3
=l1inux-ppc64

and can be passed to install.

Concrete spec is fully constrained

Userinput: abstract spec with some constraints

spec.yaml|

spec:
- mpileaks:
arch: linux-x86_64
compiler:
name: gec
version: 4.9.2
dependencies:
adept-utils: kszrtkpbza c3ss2ixcjkcorlaybnptp4
callpath: bah5f4h4d2n4 7m gycej2 mtrnrivvxy77
mpich: aadar6ifj2 3yijgmdabeakpejcli72t3
hash: 33hjjhxi7p6gyzn5ptgyes7sghyprujh
variants: {}
version: '1.0'
- adept-utils:
arch: linux-x86_64
compiler:
name: gec
version: 4.9.2
dependencies:
boost: teesjv7ehpeSksspjim5dk43a7gnowlq
mpich: aadar6ifj2 3yijgmdabeakpejcli72t3
hash: kszrtkpbzac3ss2ixcjkcorlaybnptp4
variants: {}
version: 1.0.1
- boost:
arch: linux-x86_64
compiler:
name: gcc
version:4.9.2
dependencies: {}
hash: teesjv7ehpeSksspjim5dk43a7gnowlq
variants: {}
version: 1.59.0

Detailed provenance is stored
with the installed package

17

The concretizer includes information from Dependency solving
packages, configuration, and CLI is NP-hard

N
I Iy
I package.py repository

Contributors

PR « New versions
* New dependencies
. New constraints

¢ ./ £

. »@ concretizer
spack default config
developers packages.yaml
=i
. Oy \p
admins, vami R ”) |
al preferences config packages.yam
users P gp ges.y
Ly] } >
users local environment config
spack.yam| Concrete spec is
fully constrained
Command line constraints and can be built.
users

spack install hdf5@1.12.0 +debug

National Laboratory g

i =
u SAWTeNce Livermore H PSF LLNL-PRES-2011458

Hashing allows us to handle combinatorial complexity

Dependency DAG = Each unique dependency graphis a
. unique configuration.
ileak |~ -
T - e L = Each configuration in a unique directory.

callpath — dyninst

— libelt — Multiple configurations of the same
package can coexist.

Installation Layout

— = Hash of entire directed acyclic graph
- spack \ 4 (DAG) is appended to each prefix.

— darwin-mojave-skylake
L— clang-10.0.0-apple

|

| F— bzip2-1.0.8-hc4sm4vuzpm4znmvrfzridow2mkphe2e = |nstalled pac ka ge s automatica [ly find
| I-— python-3.7.6-daqqpssxb6qbfrztsezkmhus3xoflbsy .

| — sqlite-3.30.1-u64v26igxvxyn23hysmklfums6tgjv5sr de pen dencies

| [— xz-5.2.4-u5Seawkvaoc7vonabe6nndkcfwuv233cj _ H H H

| L— zlib-1.2.11-x46g4wm46ay4pltriijbgizxjrhbaka6 SpaCk embeds RPATHS In blnarleS.
— darwin-mojave-x86_64 — No needto use modules or set

| 1 clrg-100.0apple LD_LIBRARY_PATH

| L— coreutils-8.29-pl2kcytejqcys5dzecfrtjgxfdssvnob

— Things work the way you built them

i [— -]
M Lawrence Livermore — 0 HPSF

We can configure Spack to build with external software

mpileaks Acallpath@1.0+debug
Nopenmpi Mibelf@0.8.11

packages.yaml

packages:
mpi:
buildable: False
paths:
openmpi@2.0.0 %gcc@ 4.7.3 arch=linux-rhel6-ppc64:
/path/to/external/gcc/openmpi-2.0.0
openmpi@1.10.3 %gcc@4.7.3 arch=linux-rhel6-ppc64:
/path/to/external/gcc/openmpi-1.10.3

g

Users register external packages in a
configuration file

Lawrence Livermore

[— - FT.YSS
National Laboratory = -

LLNL-PRES-2011458
e

gcc@4.7

mpileaks@2.3

3

arch=linux-redhat 6- ppc64

\

callpath@1.0

gcc@4.7.3
arch=linux-redhat 6- ppc64
+debug

.

N

openmpi@2.0.0
gcc@4.7.3
arch=linux-redhat 6-ppc64

dyninst @8.1.2
gcc@4.7.3
arch=linux-redhat 6-ppc64

hwloc@1.11.3
gcc@4.7.3
arch=linux-redhat 6-ppc64

N

libdwarf @20130729
gcc@4.7.3
arch=linux-redhat 6- ppc64

/

libpciaccess @0.13.4
gcc@4.7.3
arch=linux-redhat 6-ppc64

libelf @0.8.11
gcc@4.7.3
arch=linux-redhat 6-ppc64

libtool@2.4.6
gcc@4.7.3
arch=linux-redhat 6- ppc64

m4@1.4.17
gcc@4.7.3
arch=linux-redhat 6-ppc64

libsigsegv @2.10
gcc@4.7.3

arch=linux-redhat 6-ppc64

mpileaks@2.3
gcc@4.7.3

arch=linux-redhat 6-ppc64

\

callpath@1.0
gcc@4.7.3
arch=linux-redhat 6-ppc64
+debug

.

N

openmpi@2.0.0
gcc@4.7.3
arch=linux-redhat 6-ppc64

arch=linux-redhat 6-ppc64

dyninst @8.1.2
gcc@4.7.3

v

\

libdwarf @20130729
gcc@4.7.3
arch=linux-redhat 6-ppc64

arch=linux-redhat 6-ppc64

libelf @0.8.11
gcc@4.7.3

/path/to/external/gcc/openmpi-2.0.0

Spack prunes the DAG when adding external packages.

20

Spack mirrors

Original source

oninternet
N\
Spack allows you to define mirrors: . y 0C! Resist
* Directories in the filesystem \\ ceistry
* Onaweb server .
. \ \ <>
In an S3 bucket \\ . E S3 Bucket

\ \

Mirrors are archives of fetched tarballs, repositories, and @ ‘

|

other resources needed to build :
« Can also contain binary packages @ || Shared FS

1

By default, Spack maintains a mirror in var/spack/cache '

of everything you’ve fetched so far. @ ﬁ

You can host mirrors internal to your site
* See the documentation for more details

Spack

M Lawrence Livermore == HPSF
National Laboratory LLNL-PRES-2011458 2!

Environments enable users to build customized stacks from an

abstract description

Concretize Install

o = [] =)

spack.yamlfile
describes requirements

spack.lock describes

) . Package installations
exact versions installed

* spack.yamldescribes project requirements

* spack.lock describes exactly what versions/configurations were
installed, allows them to be reproduced.

* Can be used to maintain configuration of a software stack.
e Can easilyversion an environment in a repository

M Lawrence Livermore =228 HPSF

Simple spack.yamlfile

spack:
include external configuration
include:
- ../special-config-directory/
- ./config-file.yaml

add package specs to the “specs’ list
specs:

- hdf5

- libelf

- openmpi

Concrete spack.lock file (generated)

{
"concrete_specs": {
"4sé63s02kstplzyviezglndmavysl3nult: {
"hdfg": {
version": "1.18.5"
arch": {
"platform®: "darwin",
"platform_os": "mojave",
"target": "xB&6_&4"
*
compiler": {
"mame": “clang"
"version": "1@.8.8-apple”
Ly
namespace": “"builtin®,
parameters": {
"cxx": false,
"debug": false,
"fortran": false,
"hl": false,
"mpi": true,

22

&) spack Tutorial: Spack 101

This is an introduction to Spack with lectures and live demos. It was last presented at the

latest International Conference on Parallel Processing 2025 (54th ICPP) September 8, 2025. The event was
full day in-person tutorial..
Q search Y P
You can use these materials to teach a course on Spack at your own site, or you can just skip ahead
e and read the live demo scripts to see how Spack is used in practice.
Main Spack Documentation Slides
Download Slides.
TUTORIAL

Full citation: Alec Scott, Kathleen Shea, Caetano Melone. Managing HPC
Software Complexity with Spack. International Conference on Parallel
Environments Tutorial Processing 2025 (54th ICPP), San Diego, California, September 8, 2025.

Basic Installation Tutorial

Configuration Tutorial Video

Pack Creation Tut |
ELL LS L For the last recorded video of this tutorial, see the HPCIC Tutorial 2024 version.

Stacks Tutorial .
Live Demos
Developer Workflows Tutorial

We provide scripts that take you step-by-step through basic Spack tasks. They correspond to
Binary Caches Tutorial . . .
sections in the slides above.

Scripting with Spack . . . o .
To run through the scripts, we provide the spack/tutorial container image. You can invoke

ADDITIONAL SECTIONS
$ docker pull ghcr.io/spack/tutorial:icpp25
Module Files Tutorial $ docker run -it ghcr.io/spack/tutorial:icpp25

Excerpts from the Spack Tutorial

spack-tutorial.rtfd.io

M Lawrence Livermore == HPSF

...

Spack sustains the HPC software ecosystem with the help of
many contributors

COUNTRY USERS Over 8,500 software packages
United States 23K Over 1,500 contributors
e ‘; 2 Germany 5.3K Contributions (lines of code) over time in packages, by organization
m ‘ _— 250000 - LLNL B Kitware E Intel
2 China 4.6K Emm ANL/UIUC Max Planck Fujitsu
w ,"\ ‘* A \ — lowa B Hamburg Bl Pawsey
L . 200000 { MWW lowa State I RIKEN Heidelberg
‘. "‘ “,, * S India 4.5K AMD William and Mary ~ BBl OpenFOAM
V9 ~C R A8 — mm CSCS . CEA CINECA
8 R United Kingdom 3.3K 150000 1 EPFL 3vGeomatics Fermilab
‘f / = = RIT s HZDR e Kirchhoff
CERN Perimeterinst Genentech
' ’ Eance SK 100000 7 e ANL B Oregon]
I LANL SNL
Japan 2.4K 50000 - HiSilicon ~ mmm FAU
- B OVGU B U. Arizona
ORNL LBL
0 T —=
. > o K O Ay >
2023 aggregate documentation user counts from GA4 ® ® ® ® ® °

(note: yearly user counts are almost certainly too large)

Contributors continue to grow worldwide!

M Lawrence Livermore =228 HPSF

National Laboratory LLNL-PRES-2011458 24

One month of Spack development is pretty busy!

Period: 1 month ~

August 7, 2025 - September 7, 2025

Overview

343 Active pull requests 39 Active issues

241 11102 ©12 27

Merged pull requests Open pull requests Closed issues New issues

Excluding merges, 117 authors have pushed 241 commits to <

develop and 260 commits to all branches. On develop, 654 20
files have changed and there have been 5,735 additions and

10,983 deletions.

'ERCREL LM LEBSAH

Spack’s widespread adoption has enabled collaborations with
vendors

= AWS is investing significantly in cloud credits for Spack :

— Supporting highly scalable cloud Cl system with ~250k+/year in credits a

— Integrating Spack with ParallelCluster product WS
— Joint Spack tutorial with AWS drew 125+ participants

Google Cloud
= Google is using Spack in their HPC Toolkit cloud cluster product
— List packages to deploy; automatically built and cached in cluster deployment

= AMD has contributed ROCm packages and compiler support : ‘

— 55+ PRs mostly from AMD, also others
— ROCm, HIP, aocc packages are all in Spack now

m ®
= HPE/Cray is allowing us to do Cl in the cloud for the Cray PE environment l n tel
— Looking at tighter Spack integration with Cray PE (D

= |Intel contributing OneAPI support and licenses for our build farm nVI DIA
®

= NVIDIA contributing NVHPC compiler support and other features q r m

= Fujitsu and RIKEN have contributed a huge number of packages for ARM/a64fx support

on Fugaku Ll naro O
= ARM and Linaro members contributing ARM support * FU]ITSU

— 400+ pull requests for ARM support from various companies

M Lawrence Livermore =228 HPSF

Spack is part of the
High Performance Software Foundation (HPSF)

Project has a neutral legal entity
 501(c)(6) non-profit company

Project has a Technical Steering Committee (TSC)
e Charter mandates TSC to make decisions

 Governance defined at github.com/spack/governance m— umn] H PSF
. . m HIGH PERFORMANCE
* Trademark (Spack name, logo) assigned to Linux =KX} o'+ rounoation
Foundation
. . . THE
* Project resources owned by Linux Foundation I LINUX
* spack.io website FOUNDATION

* GitHub Organization

Lawrence Livermore 2 HPSF
Lg National Laboratory LLNL-PRES-2011458)

Connect with the Spack community

HPSF

Spack is part of the
High Performance Software Foundation

Join us at the Spack User Meeting at
HPSFCon 2026 next year!

“ @hpsf.bsky.social

hpsf.io

Join us and 3,900+ others on Spack slack

Contribute packages, docs, and features on GitHub
Follow the tutorial at spack-tutorial.rtfd.io

. . ¥ Star us on GitHub!

.. > slack.spack.lo Q github.com/spack/spack

“ @spackpm.bsky.social @ @spack@hpc.social
X @spackpm

spack.io

We hope to make distributing & using HPC software easy!

Lawrence Livermore =25 LpSE
National Laboratory

LLNL-PRES-2011458

	Slide 1
	Slide 2: Modern scientific codes are built from hundreds of small, complex pieces
	Slide 3
	Slide 4: Modern software integrates open source and internal packages
	Slide 5: Some common (but questionable) assumptions made by package managers
	Slide 6: High Performance Computing (HPC) violates many of these assumptions
	Slide 7: Spack enables software distribution for HPC
	Slide 8: Who can use Spack?
	Slide 9: What’s a package manager?
	Slide 10: Spack is not the only HPC/AI/data science package manager
	Slide 11: What about containers?
	Slide 12: Spack provides a spec syntax to describe customized package configurations
	Slide 13: Spack packages are parameterized using the spec syntax Python DSL defines many ways to build
	Slide 14: Conditional variants simplify packages
	Slide 15
	Slide 16
	Slide 17
	Slide 18: The concretizer includes information from packages, configuration, and CLI
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Environments enable users to build customized stacks from an abstract description
	Slide 23
	Slide 24: Spack sustains the HPC software ecosystem with the help of many contributors
	Slide 25: One month of Spack development is pretty busy!
	Slide 26: Spack’s widespread adoption has enabled collaborations with vendors
	Slide 27: Spack is part of the High Performance Software Foundation (HPSF)
	Slide 28

