
5th Gen AMD EPYC™ CPUs HPC Performance for Slurm Optimization

- Miguel Tiempos
- FAE
- México & CAC
- miguel.tiempos@amd.com

AMDI Al Platforms

Portafolio de entrenamiento e inferencia. Data Center | Edge | End Point

AMD Instinct™

Aceleradores

Entrenamiento e inferencia sobre HPC y Data Center **AMD** Alveo[™]

Aceleradores

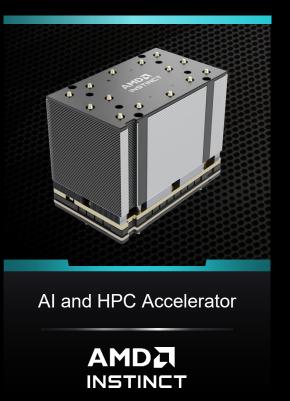
Inferencia Edge y Data Center AMD EPYC™

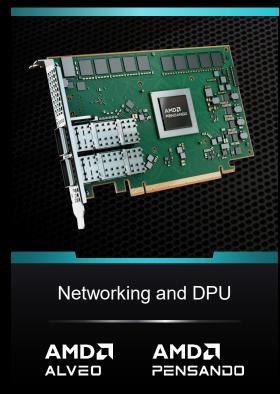
Procesadores

CPU Lider IA

AMD Versal[™] Al Edge

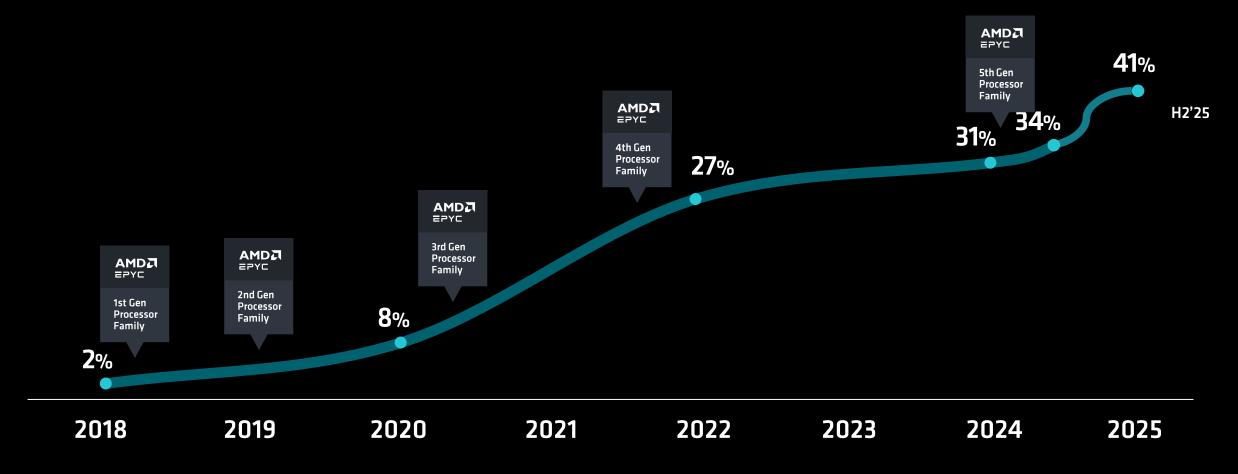
Embedded


AI + Sensor Embedded Inferencia AMD Ryzen[™] 7040


Procesadores móviles

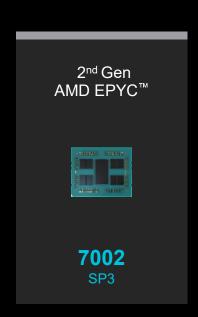
Ryzen[™] Al para Windows PCs

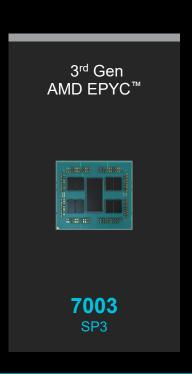
Leadership HPC Data Center Solutions

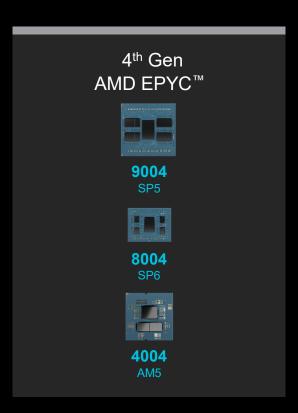


AMD delivers the broadest technology portfolio to the HPC data center

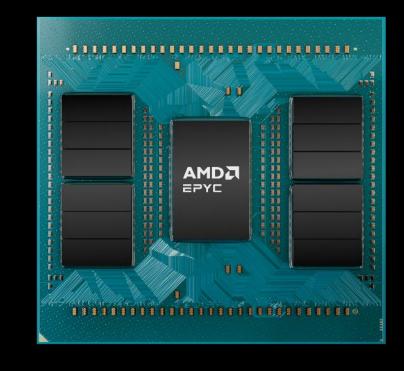
AMD EPYC™ Record Market Share...and Growing


>350 OEM Platforms


>950 Cloud Instances


AMD EPYC™ Processors

Five generations of on time technology innovation



All roadmaps are subject to change.

Introducing 5th Gen AMD EPYC[™] Processors

Formerly codenamed "Turin"

World's best CPU for cloud, enterprise HPC & Al

Up to 192 cores Up to 384 threads

Up to 5GHz **AVX512** full 512b data path

17% IPC Uplift

SP5 Platform Compatible with "Genoa"

"Turin" Addressing the Needs of the Modern Data Center

Slurm Background and Operation

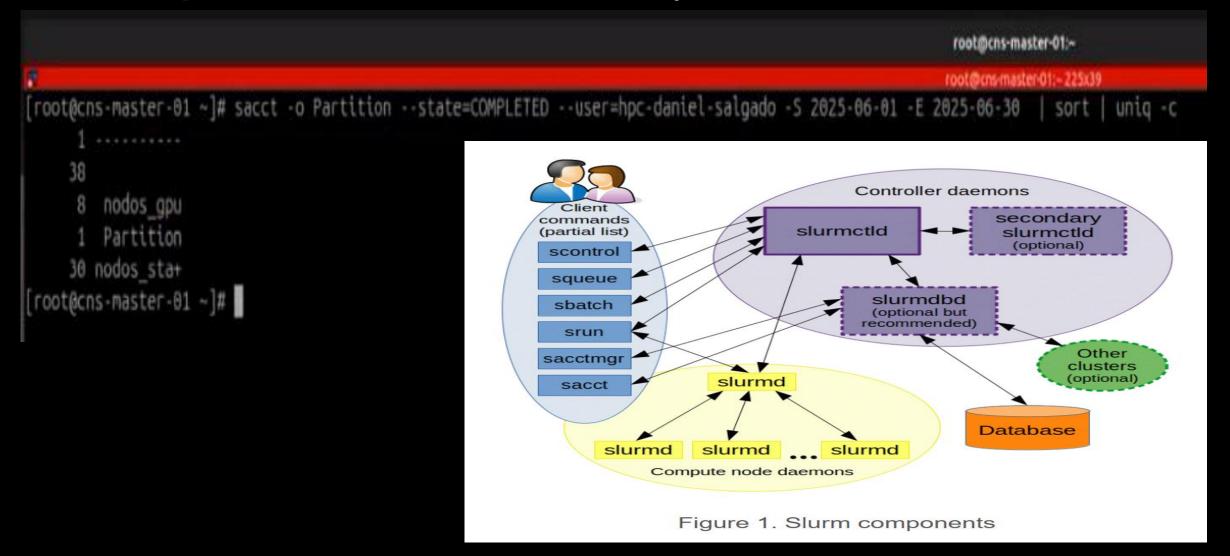
Slurm was developed at Lawrence Livermore National Laboratory, specifically as a Job Scheduler

Which is the basis for syncing the Jobs launched In our HPC Cluster.

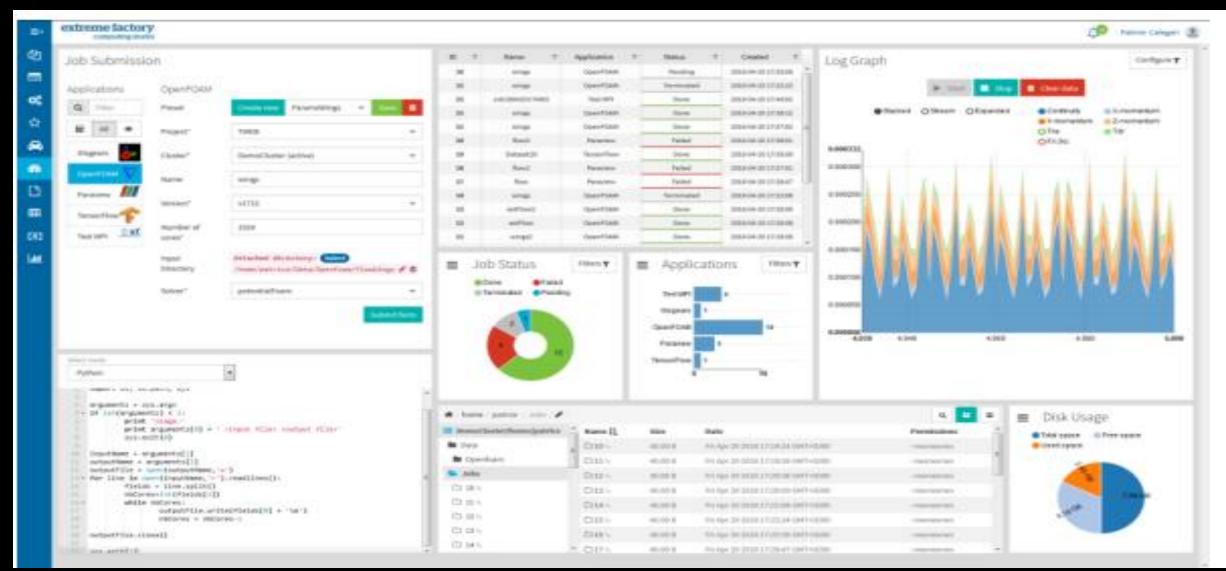
We can prioritize Jobs, configure in what nodes To run these, and control the Queque of the work To be performed.

It is in our best interest to have the best **CPU & GPU Performance in order to have the** Most efficient environment, this is where AMD Epyc provides the very best in per core Performance, and yields the most powerful HPC ecosystem in order to get more work done Quicker.

Slurm Operation squeue -u <username>

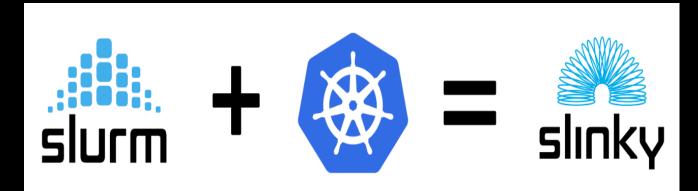

						root@cns-master-01:~
1						root@crs-master-01:- 225x39
[root@cns-master-01 ~]# hp	c					
JOBID PARTITI	ON NAME	USER	STATE	TIME		NODELIST(REASON)
16709 nodos_f	at test_R	hpc-gibran-anderson	PENDING	0:00	1	(launch failed requeued held)
16865 nodos_f	at Na-277	hpc-sinhue-lopez	RUNNING	1-19:33:34	1	cns-nodo-03
16863 nodos_f	at Na-303	hpc-sinhue-lopez		1-19:34:08	1	cns-nodo-02
16736 nodos_f		hpc-jonathan-guerrero	RUNNING	3-23:12:06	1	cns-nodo-04
16478 nodos_f	at octamero	hpc-carlos-frontana	RUNNING	7-06:45:05	1	cns-nodo-06
16928 nodos_g	pu loxa_7rhy_r4	hpc-carmen-pastor	RUNNING	27:43	1	cns-gpu-01
16927 nodos_s	ta strain_1.05	hpc-juan-martinez	PENDING	0:00	1	(Resources)
16926 nodos_s	ta strain_1.04	hpc-juan-martinez	RUNNING	17:30	1	cns-nodo-15
16925 nodos_s	ta strain_1.03	hpc-juan-martinez	RUNNING	30:21	1	cns-nodo-14
16920 nodos_s	ta vasp	hpc-ana-torres	RUNNING	2:38:23	1	cns-nodo-16
16919 nodos_s	ta vasp	hpc-ana-torres	RUNNING	2:38:42	1	cns-nodo-38
16918 nodos_s	ta E-312	hpc-pricila-romero	RUNNING	3:10:22	1	cns-nodo-33
16917 nodos_s	ta E-269	hpc-pricila-romero	RUNNING	3:11:25	1	cns-nodo-25
16916 nodos_s	ta E-271	hpc-pricila-romero	RUNNING	3:12:04	1	cns-nodo-18
16915 nodos_s	ta E-286	hpc-pricila-romero	RUNNING	3:13:20	1	cns-nodo-24
16903 nodos_s	ta vasp	hpc-ana-torres	RUNNING	5:46:09	1	cns-nodo-37
16902 nodos_s	ta vasp	hpc-ana-torres	RUNNING	5:46:37	1	cns-nodo-36
16891 nodos_s	ta extend3	hpc-jesus-acosta	RUNNING	19:33:19	1	cns-nodo-42
16887 nodos_s	ta QEGO-1Vac	hpc-juan-aguilera	RUNNING	22:53:56	1	cns-nodo-41
16867 nodos_s	ta g09_aci	hpc-juan-aguilera	RUNNING	1-16:15:21	1	cns-nodo-29
16866 nodos_s	ta Na-291	hpc-sinhue-lopez	RUNNING	1-19:30:06	1	cns-nodo-40
16864 nodos_s	ta Na-283	hpc-sinhue-lopez	RUNNING	1-19:33:38	1	cns-nodo-45
16731 nodos s	ta 20KT2SSEdfaRi3	hpc-daniel-salgado	RUNNING	3-23:53:30	1	cns-nodo-12
16730 nodos_s	ta 20KT2575srFaedRi	hpc-daniel-salgado	RUNNING	4-02:12:11	1	cns-nodo-27
16729 nodos_s	ta 20KT2575FaedRi3s	hpc-daniel-salgado	RUNNING	4-02:13:26	1	cns-nodo-26
16728 nodos_s	ta 20KT2575srEdfaRi	hpc-daniel-salgado	RUNNING	4-02:14:40	1	cns-nodo-20
16496 nodos_s	ta heptamero	hpc-carlos-frontana	RUNNING	7-05:01:54	1	cns-nodo-34
16460 nodos s	ta mb2_test	hpc-ricardo-guirado	RUNNING	7-08:53:50	1	cns-nodo-11
16357 nodos_s		hpc-esmeralda-escobar	RUNNING	8-01:05:30	1	cns-nodo-32
16356 nodos_s	ta test Esm CAHS13	hpc-esmeralda-escobar	RUNNING	8-01:07:59	1	cns-nodo-28
16355 nodos_s		hpc-esmeralda-escobar	RUNNING	8-01:09:48	1	cns-nodo-22
16347 nodos_s		hpc-esmeralda-escobar	RUNNING	8-03:00:49	1	cns-nodo-23
16317 nodos s		hpc-ricardo-guirado	RUNNING	8-06:02:51	1	cns-nodo-17
[root@cns-master-01 ~]#						

iuitee ue sep . ++1 r.m.


Slurm Operation sinfo -p <partition-name>

```
TOTAL HODGE DIG
                                      UNY_LEST
                                                      TIPCTI COLOUTYU CI OUU NUMITING OTOU, OZ. JI
                                                                                                      T FIID HINDON TI
[root@cns-master-01 ~]# sinfo
PARTITION
               AVAIL TIMELIMIT
                                         STATE NODELIST
                                  NODES
all*
                       infinite
                                         inval cns-nodd-48
all*
                       infinite
                                         down* cns-gpu-04,cns-nodo-[08,13,30-31,35,43,46]
                  UD
all*
                       infinite
                                         drain cns-nodo-[01,07,09]
                  up
all*
                       infinite
                                           mix cns-gpu-01,cns-nodo-[02-04,06,11-12,14-18,20,22-29,32-34,36-38,40,45]
                  UD
all*
                                         alloc cns-nodo-[41-42]
                       infinite
                  UP
                                          idle cns-gpu-[02-03]
all*
                       infinite
                  UD
all*
                       infinite
                                          down cns-nodo-[05,19,21,39,44,47]
                  UD
nodos fat
                       infinite
                                         down* cns-nodo-08
                  UD
                       infinite
                                         drain cns-nodo-[01.07]
nodos fat
                  UD
                                           mix cns-nodo-[02-04,06]
nodos fat
                       infinite
                                          down cns-nodo-05
nodos fat
                       infinite
nodos standard
                  up 15-00:00:0
                                         inval cns-nodo-48
nodos standard
                  up 15-00:00:0
                                         down* cns-nodo-[13,30-31,35,43,46]
nodos standard
                                         drain cns-nodo-09
                  up 15-00:00:0
nodos standard
                  up 15-00:00:0
                                           mix cns-nodo-[11-12,14-18,20,22-29,32-34,36-38,40,45]
nodos standard
                                         alloc cns-nodo-[41-42]
                  up 15-00:00:0
nodos standard
                  up 15-00:00:0
                                          down cns-nodo-[19,21,39,44,47]
                                           mix cns-nodo-[36-37,45]
escuela hpc
                  up 15-00:00:0
escuela hpc
                                          idle cns-apu-03
                  up 15-00:00:0
escuela hpc
                  UD 15-00:00:0
                                          down cns-nodo-44
nodos gpu
                                           mix cns-apu-01
                  up 15-00:00:0
                                          idle cns-gpu-[02-03]
nodos apu
                  up 15-00:00:0
                                                                                      Il teams.microsoft.com está compartiendo tu pantalla
[root@cns-master-01 ~]#
```

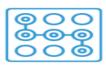
Slurm Operation sacct / User Acctivity Jobs Launched


Slurm Operation /Slurm Web

Slurm Operation /Slurm slinky

With the complement of Kubernetes to Our HPC Slurm Job scheduling, We add a new **Set of possibilities in Docker based** applications

And Al Workbench options, so that We can Control these through Slurm, with the use of Slinky.


Seamless Hybrid Workload Management

Slinky enables the simultaneous management of HPC workloads using Slurm and containerized applications via Kubernetes on the same infrastructure. This is ideal for organizations running AI/ML training, AI/ML inference, scientific simulations, or data-intensive tasks alongside modern, cloud-native applications. It removes the need to maintain separate clusters.

Dynamic Autoscaling

Slinky's Slurm Operator allows automatic scaling of compute nodes. Slinky dynamically adds or removes Slurm nodes based on workload demands, ensuring that compute resources are efficiently allocated. This leads to reduced overhead costs and ensures that the right amount of infrastructure is available when needed.

Resource Optimization

Slurm Bridge brings the full capacity of Slurm's node packing systems into Kubernetes. This allows for the intelligent scheduling of the right resources at the right time, leading to optimized resource allocation and better coordination between systems.

AMD