
CARLA 2025 - DevOps School for HPC, 22 Sept 2025

https://carlaconference.org/devops-school-for-hpc
Kenneth Hoste (HPC @ Ghent University, BE) – kenneth.hoste@ugent.be

Introduction to EasyBuild & EESSI

https://carlaconference.org/devops-school-for-hpc

● Masters & PhD in Computer Science from Ghent University (Belgium)

● Joined HPC-UGent team in October 2010

● Main tasks: user support & training, software installations

● Slowly also became EasyBuild lead developer & release manager

● Now also involved with EESSI and MultiXscale EuroHPC Centre-of-Excellence

● Likes family, beer, loud music, FOSS, helping people, dad jokes, stickers, ...

● Doesn't like C++, CMake, SCons, Bazel, TensorFlow, OpenFOAM, ...

whoami

2

@boegel.bsky.social

@boegel

kenneth.hoste@ugent.be

mast.hpc.social/@boegel

https://twitter.com/kehoste
https://github.com/boegel
mailto:kenneth.hoste@ugent.be

● EasyBuild is a software build and installation framework

● Strong focus on scientific software, performance, and HPC systems

● Open source (GPLv2), implemented in Python

● Brief history:

○ Created in-house at HPC-UGent in 2008

○ First released publicly in Apr’12 (version 0.5)

○ EasyBuild 1.0.0 released in Nov’12 (during SC12)

○ Worldwide community has grown around it since then!

(>1,000 members on EasyBuild Slack)

https://easybuild.io

https://docs.easybuild.io

https://blog.easybuild.io

https://github.com/easybuilders

https://easybuild.io/join-slack

What is EasyBuild?

3

https://easybuild.io
https://docs.easybuild.io
https://blog.easybuild.io
https://github.com/easybuilders
https://easybuild.io/join-slack

● Tool to provide a consistent and well performing scientific software stack

● Uniform interface for installing scientific software on HPC systems

● Saves time by automating tedious, boring and repetitive tasks

● Can empower scientific researchers to self-manage their software stack

● A platform for collaboration among HPC sites worldwide

● Has become an “expert system” for installing scientific software

EasyBuild in a nutshell

4

● Supports fully autonomously installing (scientific) software,

including dependencies, generating environment module files, …

● No admin privileges are required (only write permission to installation prefix)

● Highly configurable, easy to extend, support for hooks, easy customisation

● Detailed logging, fully transparent via support for “dry runs” and trace mode

● Support for using custom module naming schemes (incl. hierarchical)

Key features of EasyBuild (1/2)

5

● Integrates with various other tools (Lmod, Singularity, FPM, Slurm, GC3Pie, …)

● Actively developed and supported by worldwide community

● Frequent stable releases since 2012 (every 6 - 8 weeks)

● Comprehensive testing: unit tests, testing contributions, regression testing

● Various support channels (mailing list, Slack, conf calls) + yearly user meetings

Key features of EasyBuild (2/2)

6

Performance

● Strong preference for building software from source

● Software is optimized for the processor architecture of build host (by default)

Reproducibility

● Compiler, libraries, and required dependencies are mostly controlled by EasyBuild

● Fixed software versions for compiler, libraries, (build) dependencies, ...

Community effort

● Development is highly driven by EasyBuild community

● Lots of active contributors, integration with GitHub to facilitate contributions

Focus points in EasyBuild

7

● EasyBuild is not YABT (Yet Another Build Tool)

○ It does not try to replace CMake, make, pip, etc.

○ It wraps around those tools and automates installation procedures

● EasyBuild does not replace traditional Linux package managers (yum, dnf, apt, …)

○ You should still install some software via OS package manager

○ Anything that is run with admin privileges and should be updated in-place (OpenSSL, Slurm, etc.)

● EasyBuild is not a magic solution to all your (software installation) problems

○ You may still run into compiler errors (unless somebody worked around it already)

What EasyBuild is not

8

● EasyBuild framework defines step-wise installation procedure, leaves some unimplemented

● Easyblock completes the implementation, override or extends installation steps where needed

● Easyconfig file provides the details (software version, dependencies, toolchain, …)

Step-wise installation procedure

9

EasyBuild terminology in a nutshell

10

The EasyBuild framework leverages easyblocks to automatically build and install
(scientific) software, potentially including additional extensions, using a particular
compiler toolchain, as specified in easyconfig files which each define a set of
easyconfig parameters.

EasyBuild ensures that the specified (build) dependencies are in place, and automatically
generates a set of (environment) modules that facilitate access to the installed software.

An easystack file can be used to specify a collection of software to install with EasyBuild.

● Released on 18 March 2025

● Concludes a development effort that was started in March 2023 (103 weeks)

● 1,364 merged pull requests
(framework: 245, easyblocks: 345, easyconfigs: 804)

● There will be no more EasyBuild 4.x releases,

so you must migrate to EasyBuild v5.x!

● Including backwards-incompatible changes, changes in default configuration, …

● Overview of changes in EasyBuild v5.0: https://docs.easybuild.io/easybuild-v5

EasyBuild v5.0

11

https://docs.easybuild.io/easybuild-v5

● Linux as operating system (CentOS, RHEL, Ubuntu, Debian, SLES, …)

○ EasyBuild also works on macOS, but support is very basic

● Python 3.6+ (Python 3.9+ recommended)

○ Only Python standard library is required for core functionality of EasyBuild

● An environment modules tool (module command)

○ Default is Lua-based Lmod implementation, highly recommended!

■ On RHEL-based Linux: easy to install Lmod via EPEL

○ Tcl-based implementation (Environment Modules) is also supported

Installing EasyBuild: requirements

12

Installing EasyBuild: different options

● Installing EasyBuild using a standard Python installation tool

○ pip install easybuild

○ … or a variant thereof (pip3 install --user , using virtualenv , etc.)

○ May require additional commands, for example to update environment

● Installing EasyBuild as a module, with EasyBuild

○ 2-step “bootstrap” procedure, via temporary EasyBuild installation using pip

● Development setup

○ Clone GitHub repositories:

easybuilders/easybuild-{framework,easyblocks,easyconfigs}

○ Update $PATH and $PYTHONPATH environment variables

13

Installing EasyBuild: pip install in Python venv

14

$ python3 -m venv eb-env
$ source eb-env/bin/activate

(eb-env) $ pip install easybuild archspec rich
Collecting easybuild
…
Installing collected packages: easybuild-framework, easybuild-easyconfigs,
easybuild-easyblocks, easybuild, archspec, rich, …
Successfully installed archspec-0.2.5 easybuild-5.0.0
easybuild-easyblocks-5.0.0 easybuild-easyconfigs-5.0.0
easybuild-framework-5.0.0 rich-14.0.0 …
…
(eb-env) $ eb --version
This is EasyBuild 5.1.1 (framework: 5.1.1, easyblocks: 5.1.1) on host …

● Check EasyBuild version:

eb --version

● Show help output (incl. long list of supported configuration settings)

eb --help

● Show the current (default) EasyBuild configuration:

eb --show-config

● Show system information:

eb --show-system-info

● Check required (and optional) dependencies:

eb --check-eb-deps

Verifying the EasyBuild installation

15

Updating EasyBuild (with pip or EasyBuild)
● Updating EasyBuild (in-place) that was installed with pip:

pip install --upgrade easybuild

(+ additional options like --user, or using pip3, depending on your setup)

● Use current EasyBuild to install latest EasyBuild release as a module:

eb --install-latest-eb-release

 (you may need to install wheel first: pip install wheel)

○ This is not an in-place update, but a new EasyBuild installation!

○ You need to load (or swap to) the corresponding module afterwards:

module load EasyBuild/5.1.1

16

● EasyBuild should work fine out-of-the-box if you are using Lmod as modules tool

● … but it will (ab)use $HOME/.local/easybuild to install software into, etc.

● It is strongly recommended to configure EasyBuild properly!

● Main questions you should ask yourself:

○ Where should EasyBuild install software (incl. module files)?

○ Where should auto-downloaded sources be stored?

○ Which filesystem is best suited for software build directories (I/O-intensive)?

Configuring EasyBuild

17

● Most important configuration settings: (strongly recommended to specify the ones in bold!)

○ Modules tool + syntax (modules-tool + module-syntax)

○ Software + modules installation path (installpath)*

○ Location of software sources “cache” (sourcepath)*

○ Parent directory for software build directories (buildpath)*

○ Location of easyconfig files archive (repositorypath)*

○ Search path for easyconfig files (robot-paths + robot)

○ Module naming scheme (module-naming-scheme)

● Several locations* (+ others) can be controlled at once via prefix configuration setting

● Full list of EasyBuild configuration settings (~280) is available via eb --help

Primary configuration settings

18

Configuration levels
● There are 3 different configuration levels in EasyBuild:

○ Configuration files (see eb --show-default-configfiles)

○ Environment variables ($EASYBUILD_XYZ)

○ Command line options to the eb command

● Each configuration setting can be specified via each “level” (no exceptions!)

● Hierarchical configuration:
○ Configuration files override default settings

○ Environment variables override configuration files

○ eb command line options override environment variables

19

Inspecting the current configuration

● It can be difficult to remember how EasyBuild was configured

● Output produced by eb --show-config is useful to remind you

● Shows configuration settings that are different from default

● Always shows a couple of key configuration settings

● Also shows on which level each configuration setting was specified

● Full current configuration: eb --show-full-config

20

$ cat $HOME/config.cfg
[config]
prefix=$HOME/easybuild
buildpath=/tmp/$USER

$ export EASYBUILD_CONFIGFILES=$HOME/config.cfg

$ eb --installpath=/tmp/$USER --show-config
Current EasyBuild configuration
(C: command line argument, D: default value,
E: environment variable, F: configuration file)
buildpath (F) = /tmp/ec2-user
configfiles (E) = /home/ec2-user/config.cfg
containerpath (F) = /home/ec2-user/easybuild/containers
installpath (C) = /tmp/ec2-user
packagepath (F) = /home/ec2-user/easybuild/packages
prefix (F) = /home/ec2-user/easybuild
repositorypath (F) = /home/ec2-user/easybuild/ebfiles_repo
robot-paths (D) = /home/ec2-user/eb-env/easybuild/easyconfigs
rpath (D) = True
sourcepath (F) = /home/ec2-user/easybuild/sources

Inspecting the current configuration: example

21

Basic usage of EasyBuild

● Use eb command to run EasyBuild

● Software to install is usually specified via name(s) of easyconfig file(s), or easystack file

● --robot (-r) option is required to also install missing dependencies (and toolchain)

● Typical workflow:

○ Find or create easyconfig files to install desired software

○ Inspect easyconfigs, check missing dependencies + planned installation procedure

○ Double check current EasyBuild configuration

○ Instruct EasyBuild to install software (while you enjoy a coffee… or two)

22

To search for easyconfig files to install (case-insensitive), use eb --search

$ eb --search bcftools

== found valid index for /home/ec2-user/eb-env/easybuild/easyconfigs, so using it...

 * /home/example/eb-env/easybuild/easyconfigs/b/BCFtools/BCFtools-1.12-GCC-10.3.0.eb

 * /home/example/eb-env/easybuild/easyconfigs/b/BCFtools/BCFtools-1.14-GCC-11.2.0.eb

 * /home/example/eb-env/easybuild/easyconfigs/b/BCFtools/BCFtools-1.15.1-GCC-11.3.0.eb

 * /home/example/eb-env/easybuild/easyconfigs/b/BCFtools/BCFtools-1.17-GCC-12.2.0.eb

 * /home/example/eb-env/easybuild/easyconfigs/b/BCFtools/BCFtools-1.18-GCC-12.3.0.eb

 * /home/example/eb-env/easybuild/easyconfigs/b/BCFtools/BCFtools-1.19-GCC-13.2.0.eb

 * /home/example/eb-env/easybuild/easyconfigs/b/BCFtools/BCFtools-1.21-GCC-13.3.0.eb

Search for easyconfigs via eb --search

23

Installing software with EasyBuild

● To install software with EasyBuild, just run the eb command:

○ eb BCFtools-1.18-GCC-12.3.0.eb

● If any dependencies are still missing, you will need to also use --robot:

○ eb SAMtools-1.18-GCC-12.3.0.eb --robot

● More details while the installation is running via trace output (default in EasyBuild v5.x)

○ eb BCFtools-1.18-GCC-12.3.0.eb --robot --trace

● To reinstall software, use eb --rebuild (or eb --force)

24

Using software installed with EasyBuild

To use the software you installed with EasyBuild, load the corresponding module:

inform modules tool about modules installed with EasyBuild

module use $HOME/easybuild/modules/all

check for available modules for BCFtools

module avail BCFtools

load BCFtools module to “activate” the installation

module load BCFtools/1.18-GCC-12.3.0

25

● To see the contents of an easyconfig file, you can use eb --show-ec

● No need to know where it is located, EasyBuild will do that for you!

$ eb --show-ec BCFtools-1.18-GCC-12.3.0.eb
easyblock = 'ConfigureMake'

name = 'BCFtools'
version = '1.18'

homepage = 'https://www.htslib.org/'
description = """Samtools is a suite of programs for interacting with high-throughput
sequencing data.
 BCFtools - Reading/writing BCF2/VCF/gVCF files and calling/filtering/summarising SNP and
short indel sequence
 variants"""

toolchain = {'name': 'GCC', 'version': '12.3.0'}
toolchainopts = {'pic': True}
…

Inspecting easyconfigs via eb --show-ec

26

To check which dependencies are required, you can use eb --dry-run --robot

(or eb -D -r or eb -Dr):

● Provides overview of all dependencies (both installed and missing)

● Including compiler toolchain and build dependencies

Checking dependencies via eb --dry-run

27

$ eb BCFtools-1.18-GCC-12.3.0.eb -Dr
 ...
 * [x] $CFGS/x/XZ/XZ-5.4.2-GCCcore-12.3.0.eb (module: XZ/5.4.2-GCCcore-12.3.0)

 * [x] $CFGS/g/GSL/GSL-2.7-GCC-12.3.0.eb (module: GSL/2.7-GCC-12.3.0)

 * [x] $CFGS/h/HTSlib/HTSlib-1.18-GCC-12.3.0.eb (module: HTSlib/1.18-GCC-12.3.0)

 * [] $CFGS/b/BCFtools/BCFtools-1.18-GCC-12.3.0.eb (module:

BCFtools/1.18-GCC-12.3.0)

To check which dependencies are still missing, use eb --missing (or eb -M):

● Takes into account available modules, only shows what is still missing

$ eb BCFtools-1.18-GCC-12.3.0.eb --missing

1 out of 23 required modules missing:

* BCFtools/1.18-GCC-12.3.0 (BCFtools-1.18-GCC-12.3.0.eb)

Checking missing dependencies via eb --missing

28

● EasyBuild can quickly unveil how exactly it would install an easyconfig file

● Via eb --extended-dry-run (or eb -x)

● Produces detailed output in a matter of seconds

● Software is not actually installed, shell commands + file operations are skipped!

● Some guesses and assumptions are made, so it may not be 100% accurate…

● Any errors produced by the easyblock are reported as being ignored

● Very useful to evaluate changes to an easyconfig file or easyblock!

Inspecting software install procedures

29

$ eb Boost-1.82.0-GCC-12.3.0.eb -x
...

Defining build environment...

 ...

 export CXX='g++'

 export CXXFLAGS='-O2 -ftree-vectorize -march=native -fno-math-errno -fPIC'

 ...

configuring... [DRY RUN]

[configure_step method]

 running shell command "./bootstrap.sh --with-toolset=gcc

--prefix=/home/example/software/Boost/1.82.0-GCC-12.3.0 --without-libraries=python,mpi"

 (in /tmp/example/build/Boost/1.82.0/GCC-12.3.0)

 ...
30

Inspecting software install procedures: example

Troubleshooting failing installations

31

● Sometimes stuff still goes wrong…

● Being able to troubleshoot a failing installation is a useful/necessary skill

● Problems that occur include (but are not limited to):

○ Missing source files

○ Missing dependencies (perhaps overlooked required dependencies)

○ Failing shell commands (non-zero exit status)

○ Running out of memory or storage space

○ Compiler errors (or crashes)

● EasyBuild keeps a thorough log for each installation which is very helpful

● EasyBuild keeps track of the installation in a detailed log file

● During the installation, it is stored in a temporary directory:
$ eb example.eb

== Temporary log file in case of crash /tmp/eb-r503td0j/easybuild-17flov9v.log

...

● Includes executed shell commands and output, build environment, etc.

● More detailed log file when debug mode is enabled (debug configuration setting)

● There is a log file per EasyBuild session, and one per performed installation

● When an installation completes successfully,
the log file is copied to a subdirectory of the software installation directory

Troubleshooting: log files

32

● EasyBuild leaves the build directory in place when the installation failed

● Can be useful to inspect the contents of the build directory for debugging

● For example:

○ Check config.log when configure command failed

○ Check CMakeFiles/CMakeError.log when cmake command failed (good luck…)

Troubleshooting: inspecting the build directory

33

Troubleshooting with EasyBuild v5.x

34

● EasyBuild v5.x makes troubleshooting failing installations significantly easier

● When a shell command run by EasyBuild fails:

○ The problem will be reported in a more user-friendly way

○ You can quickly inspect (only) the output of that command

○ A script is generated to start an interactive shell session to debug “in context”:

in the correct working directory + prepared build environment

● Made possible by switching to new run_shell_cmd function

https://docs.easybuild.io/interactive-debugging-failing-shell-commands

https://docs.easybuild.io/interactive-debugging-failing-shell-commands

EasyBuild 5.x produces clearer error messages when a shell command failed:

ERROR: Shell command failed!

full command -> make -j 8 LDFLAGS='-lfast'

exit code -> 2

called from -> 'build_step' function in /.../easyblocks/generic/configuremake.py (line 357)

working directory -> /tmp/ec2-user/kenneth/easybuild/build/BCFtools/1.18/GCC-12.3.0/bcftools-1.18

output (stdout + stderr) -> /tmp/eb-i61vle8x/run-shell-cmd-output/make-1ynysa6f/out.txt

interactive shell script -> /tmp/eb-i61vle8x/run-shell-cmd-output/make-1ynysa6f/cmd.sh

● Colors to draw attention to the most important parts of the error message

● File with (only) command output + path to build directory are easy to find

● Auto-generated cmd.sh script starts interactive subshell in correct build environment!

Improved error reporting in EasyBuild v5.x

35
https://docs.easybuild.io/interactive-debugging-failing-shell-commands

https://docs.easybuild.io/interactive-debugging-failing-shell-commands

Adding support for additional software

● Every installation performed by EasyBuild requires an easyconfig file

● Easyconfig files can be:

○ Included with EasyBuild itself (or obtained elsewhere)

○ Derived from an existing easyconfig (manually or automatic)

○ Created from scratch

● Most easyconfigs leverage a generic easyblock

● Sometimes using a custom software-specific easyblock makes sense...

36

Writing easyconfig files

● Collection of easyconfig parameter definitions (Python syntax),

collectively specify what to install

● Some easyconfig parameters are mandatory, and must always be defined:

name, version , homepage , description , toolchain

● Commonly used easyconfig parameters (but strictly speaking not required):
○ easyblock (by default derived from software name)

○ versionsuffix

○ source_urls, sources, patches, checksums

○ dependencies, builddependencies

○ preconfigopts, configopts, prebuildopts, buildopts, preinstallopts, installopts

○ sanity_check_paths, sanity_check_commands

37https://docs.easybuild.io/writing-easyconfig-files

https://docs.easybuild.io/writing-easyconfig-files

Easyblocks vs easyconfigs
● When can you get away with using an easyconfig leveraging a generic easyblock?

● When is a software-specific easyblock really required?

● Easyblocks are “implement once and forget”

● Easyconfig files leveraging a generic easyblock can become too complicated (subjective)

● Reasons to consider implementing a custom easyblock:

○ 'Critical' values for easyconfig parameters required to make installation succeed

○ Custom (configure) options related to toolchain or included dependencies

○ Interactive commands that need to be run

○ Having to create or adjust specific (configuration) files

○ 'Hackish' usage of a generic easyblock

○ Complex or very non-standard installation procedure

38

Exercise on creating easyconfig file from scratch

39

● Step-wise example + exercise of creating an easyconfig file from scratch

● For fictitious software packages: eb-tutorial + py-eb-tutorial

● Sources available at

https://github.com/easybuilders/easybuild-tutorial/tree/main/docs/files

● Great exercise to work through these yourself!

name = 'eb-tutorial'

version = '1.0.1'

homepage = 'https://easybuilders.github.io/easybuild-tutorial'

description = "EasyBuild tutorial example"

https://tutorial.easybuild.io

https://github.com/easybuilders/easybuild-tutorial/tree/main/docs/files
https://tutorial.easybuild.io

● Documentation is read all over the world

● HPC sites, consortia, and companies

● Slack: >1000 members,

~180 active members per week

● Bi-weekly online conf calls + yearly user meeting

The EasyBuild community

40

EasyBuild User Meeting 2025 (Jülich, Germany)

There are several ways to contribute to EasyBuild, including:

● Providing feedback (positive or negative)

● Reporting bugs

● Joining the discussions (mailing list, Slack, conf calls)

● Sharing suggestions/ideas for enhancements & additional features

● Contributing easyconfigs, enhancing easyblocks,

adding support for new software, implementing additional features, ...

● Extending & enhancing documentation

Contributing to EasyBuild

41

● EasyBuild has strong integration with GitHub, which facilitates contributions

● Some additional Python packages required for this: GitPython, keyring

● Also requires some additional configuration, incl. providing a GitHub token

● Enables creating, updating, reviewing pull requests using eb command!

● Makes testing contributions very easy: ~2,500 easyconfig pull requests per year!

● Extensively documented:

docs.easybuild.io/integration-with-github

GitHub integration features

42

https://docs.easybuild.io/integration-with-github

metadata is automatically
derived from easyconfig

saves a lot of time!

Opening a pull request in 1, 2, 3

43

+ log into GitHub to actually open the pull request (clickety, clickety...)

$ mv sklearn.eb scikit-learn-1.4.2-gfbf-2023a.eb

$ mv scikit-learn*.eb easybuild/easyconfigs/s/scikit-learn

$ git checkout develop && git pull upstream develop

$ git checkout -b scikit_learn_142_gfbf_2023a

$ git add easybuild/easyconfigs/s/scikit-learn

$ git commit -m "{data}[gfbf/2023a] scikit-learn v1.4.2"

$ git push origin scikit_learn_142_gfbf_2023a

eb --new-pr sklearn.eb

one single eb command

no git commands

no GitHub interaction

● Hooks allow you to customize EasyBuild easily and consistently

● Set of Python functions that are automatically picked up by EasyBuild

● Can be used to ”hook” custom code into specific installation steps

● Make EasyBuild use your hooks via hooks configuration option

● Examples:
○ Inject or tweak configuration options

○ Change toolchain definitions

○ Custom checks to ensure that site policies are taken into account

● Extensively documented: docs.easybuild.io/hooks

Customizing EasyBuild via Hooks

44

https://docs.easybuild.io/hooks

● EUM’22 talk by Alex: Building a heterogeneous MPI stack with EasyBuild

https://easybuild.io/eum22/#eb-mpi

● contrib/hooks subdirectory in easybuild-framework GitHub repository:

https://github.com/easybuilders/easybuild-framework/tree/develop/contrib/hooks

Hooks: examples

45

https://easybuild.io/eum22/#eb-mpi
https://github.com/easybuilders/easybuild-framework/tree/develop/contrib/hooks

Ensure that software is installed with a specific license group:

def parse_hook(self, *args, **kwargs):

if self.name == 'example':

 # use correct license group for software ‘example’

 self['group'] = 'licensed_users_example'

Hooks: examples

46Kenneth

● An easyblock may be required for more complex software installations

● This requires some Python skills, and familiarity with EasyBuild framework

● A software-specific easyblock can derived from a generic easyblock

● Focus is usually on configure/build/installs steps of installation procedure

● See also https://docs.easybuild.io/implementing-easyblocks

Implementing Easyblocks

47Kenneth

https://docs.easybuild.io/implementing-easyblocks

● EasyBuild can distribute the installation of a software stack as jobs on a cluster

● Slurm is the default job backend in EasyBuild v5.x

● Use “eb … --job --robot” to submit software installations

to be performed with EasyBuild as Slurm jobs

● See also https://docs.easybuild.io/submitting-jobs

Submitting Installations as Slurm Jobs

48Kenneth

https://docs.easybuild.io/submitting-jobs

● Website: https://easybuild.io

● Documentation: https://docs.easybuild.io

● Tutorials: https://tutorial.easybuild.io

● EasyBuild User Meeting: https://easybuild.io/eum (slides+recording of all talks available!)

● Getting help:

○ Mailing list: https://lists.ugent.be/wws/subscribe/easybuild

○ Slack: https://easybuild.slack.com - https://easybuild.io/join-slack

○ Bi-weekly conference calls: https://github.com/easybuilders/easybuild/wiki/Conference-calls

Questions?

49

https://easybuild.io
https://docs.easybuild.io
https://tutorial.easybuild.io
https://easybuild.io/eum
https://lists.ugent.be/wws/subscribe/easybuild
https://easybuild.slack.com
https://easybuild.io/join-slack
https://github.com/easybuilders/easybuild/wiki/Conference-calls

SSE2 AVX AVX2 AVX512

GROMACS built for...

● Software should be optimized for the system it will run on (keep the P in HPC!)

● Impact on performance is often significant for scientific software!

Optimized scientific software installations

5050

• Example: GROMACS 2020.1
(PRACE benchmark, Test Case B)

• Metric: (simulated) ns/day,
higher is better

• Test system: dual-socket
Intel Xeon Gold 6420
(Cascade Lake, 2x18 cores)

• Performance of different
GROMACS binaries,
on exact same hardware/OS

● Explosion of available scientific software applications (bioinformatics, AI boom, …)

● Increasing interest in cloud for scientific computing (flexibility!)

● Increasing variety in processor (micro)architectures beyond Intel & AMD:
Arm is coming already here (see Fugaku, JUPITER, …), RISC-V is coming (soon?)

● In strong contrast: available (wo)manpower in HPC support teams is (still) limited…

The changing landscape of scientific computing

5151

https://www.r-ccs.riken.jp/en/fugaku/
https://www.hpcwire.com/off-the-wire/eurohpc-amplifies-european-research-and-industry-with-unleashing-jupiters-exascale-potential/

5252

What if you no longer have to install

a broad range of scientific software

from scratch on every laptop, HPC cluster,

or cloud instance you use or maintain,

without compromising on performance?

● European Environment for Scientific Software Installations (EESSI)

● Shared repository of (optimized!) scientific software installations

● Avoid duplicate work across (HPC) sites by collaborating on a shared software stack

● Uniform way of providing software to users, regardless of the system they use!

● Should work on any Linux OS and system architecture
○ From laptops and personal workstations to HPC clusters and cloud

○ Support for different CPUs, interconnects, GPUs, etc.

● Focus on performance, automation, testing, collaboration

53

EESSI in a nutshell

https://www.eessi.io/docs/

Caspar

https://www.eessi.io/docs/

Major goals of EESSI

5454

● Providing a truly uniform software stack

○ Use the (exact) same software environment everywhere

○ Without sacrificing performance for “mobility of compute”
(like is typically done with containers/conda)

● Avoid duplicate work (for researchers, HPC support teams, sysadmins, …)

○ Tools that automate software installation process
(EasyBuild, Spack) are not sufficient anymore

○ Go beyond sharing build recipes => work towards a shared software stack

● Facilitate HPC training, development of (scientific) software, …

5555

High-level overview of EESSI

Host operating system

 T

es
tin

g
Software layer

Optimized applications + dependencies

Filesystem layer
Distribution of the software stack

Compatibility layer
Levelling the ground across client OSs

Host OS
provides
network
& GPU
drivers,

resource
manager
(Slurm),

...

Filesystem Layer

Global distribution of
software installations

via CernVM-FS

EESSI ingredients
Optimized software

installations for specific
CPU microarchitectures

Intuitive user interface:
module avail,
module load, …

Automatic selection of
best suited part of
software stack for

CPU microarchitectures

Compatibility layer

Abstraction from the
host operating system

56Caspar

Software Layer

● Software installations included in EESSI are:

○ Automatically “streamed in” on demand (via CernVM-FS)

○ Built to be independent of the host operating system

“Containers without the containing”

○ Optimized for specific CPU generations + specific GPU types

● Initialization script auto-detects CPU + GPU of the system

How does EESSI work?

57

Lara

EESSI as a shared software stack

Currently > 1,000 software installations available per supported CPU target

via software.eessi.io CernVM-FS repository; increasing every week

● 13 (+1) supported CPU targets (x86_64 + Arm),
see https://eessi.io/docs/software_layer/cpu_targets

● Over 500 different software packages,
excl. extensions: Python packages, R libraries

● Over 15,000 software installations in total

● Including ESPResSo, GROMACS, LAMMPS,
OpenFOAM, PyTorch, R, QuantumESPRESSO,
TensorFlow, waLBerla, WRF, …

● eessi.io/docs/available_software/overview

● Using foss/2023a and foss/2023b toolchains in EESSI 2023.06

● Using foss/2024a and foss/2025a toolchains in EESSI 2025.06
5959

Overview of available software in EESSI

https://eessi.io/docs/software_layer/cpu_targets
http://eessi.io/docs/available_software/overview

Getting access EESSI via CernVM-FS (demo)

 # Native installation
Installation commands for RHEL-based distros

like CentOS, Rocky Linux, Almalinux, Fedora, …

install CernVM-FS

sudo yum install -y

https://ecsft.cern.ch/dist/cvmfs/cvmfs-release/cvmfs-release-latest.noarch.rpm

sudo yum install -y cvmfs

create client configuration file for CernVM-FS

(no proxy, 10GB local CernVM-FS client cache))

sudo bash -c "echo 'CVMFS_CLIENT_PROFILE="single"' > /etc/cvmfs/default.local"

sudo bash -c "echo 'CVMFS_QUOTA_LIMIT=10000' >> /etc/cvmfs/default.local"

Make sure that EESSI CernVM-FS repository is accessible

sudo cvmfs_config setup

60
Alternative ways of accessing EESSI are available, via a container image, via cvmfsexec, …
eessi.io/docs/getting_access/native_installation - eessi.io/docs/getting_access/eessi_container

http://eessi.io/docs/getting_access/native_installation
http://eessi.io/docs/getting_access/eessi_container

The EESSI User Experience

Local client cache Mirror server

$ source /cvmfs/software.eessi.io/versions/2023.06/init/bash

{EESSI 2023.06} $ module load GROMACS/2024.1-foss-2023b

{EESSI 2023.06} $ gmx mdrun ...

Central server

EESSI provides on-demand streaming

of (scientific) software (like music, TV-series, …)
61Kenneth

Using EESSI (demo)

62

eessi.io/docs/using_eessi/eessi_demos

/cvmfs/software.eessi.io/versions/2023.06/software

`-- linux

 |-- aarch64

 | |-- a64fx

 | |-- generic

 | |-- neoverse_n1

 | |-- neoverse_v1

 | `-- nvidia/grace

 `-- x86_64

 |-- amd

 | |-- zen2

 | |-- zen3

 | `-- zen4

 |-- generic

 `-- intel

 |-- cascadelake

 |-- haswell

 |-- icelake

 |-- haswell

 `-- sapphirerapids

 |-- modules

 `-- software

$ source /cvmfs/software.eessi.io/versions/2023.06/init/bash

Found EESSI pilot repo @

/cvmfs/software.eessi.io/versions/2023.06!

archdetect says x86_64/amd/zen3

Using x86_64/amd/zen3 as software subdirectory

...

Environment set up to use EESSI pilot software stack, have fun!

{EESSI 2023.06} $ module load R/4.3.2-gfbf-2023a

{EESSI 2023.06} $ which R

/cvmfs/software.eessi.io/versions/2023.06/software/linux/x86_64/

amd/zen3/software/R/4.3.2-gfbf-2023a/bin/R

{EESSI 2023.06} $ R --version

R version 4.3.2

Automatically detects CPU microarchitecture

https://www.eessi.io/docs/using_eessi/eessi_demos

Website: https://eessi.io

Join our Slack channel (see join link on website)

Documentation: https://eessi.io/docs

Blog: https://eessi.io/docs/blog

GitHub: https://github.com/EESSI

Paper (open access): https://doi.org/10.1002/spe.3075

EESSI YouTube channel

Bi-monthly online meetings
(first Thursday, odd months, 2pm CEST)

https://www.eessi.io
https://eessi.io/docs
https://eessi.io/docs/blog
https://github.com/EESSI
https://doi.org/10.1002/spe.3075
https://www.youtube.com/channel/UCKLS5X7_oMWhUrAZuzSwBxQ
https://github.com/EESSI/meetings/wiki

5 Mondays in a row May-June 2025
https://eessi.io/docs/training/2025/webinar-series-2025Q2

○ Introduction to EESSI

○ Introduction to CernVM-FS

○ Introduction to EasyBuild

○ EESSI for CI/CD (26 May)

○ Using EESSI as the base for a system stack (2 June)

Slides + recordings available

64

Webinar series: Different aspects of EESSI

https://eessi.io/docs/training/2025/webinar-series-2025Q2

65

Web page: multixscale.eu

Facebook: MultiXscale

Twitter: @MultiXscale

LinkedIn: MultiXscale

 BlueSky: MultiXscale

Funded by the European Union. This work has received funding from the European High Performance Computing Joint Undertaking (JU) and countries participating in
the project under grant agreement No 101093169.

https://www.multixscale.eu/
https://www.facebook.com/profile.php?id=100090773041074
https://twitter.com/multixscale
https://www.linkedin.com/company/91063314/
https://web-cdn.bsky.app/profile/multixscale.bsky.social

