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● Masters & PhD in Computer Science from Ghent University (Belgium)

● Joined HPC-UGent team in October 2010

● Main tasks: user support & training, software installations

● Slowly also became EasyBuild lead developer & release manager

● Now also involved with EESSI and MultiXscale EuroHPC Centre-of-Excellence

● Likes family, beer, loud music, FOSS, helping people, dad jokes, stickers, ...

● Doesn't like C++, CMake, SCons, Bazel, TensorFlow, OpenFOAM, ...

whoami
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● EasyBuild is a software build and installation framework

● Strong focus on scientific software, performance, and HPC systems

● Open source (GPLv2), implemented in Python

● Brief history:

○ Created in-house at HPC-UGent in 2008

○ First released publicly in Apr’12 (version 0.5)

○ EasyBuild 1.0.0 released in Nov’12 (during SC12)

○ Worldwide community has grown around it since then!

(>1,000 members on EasyBuild Slack)

https://easybuild.io

https://docs.easybuild.io

https://blog.easybuild.io 

https://github.com/easybuilders

https://easybuild.io/join-slack

What is EasyBuild?
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● Tool to provide a consistent and well performing scientific software stack

● Uniform interface for installing scientific software on HPC systems

● Saves time by automating tedious, boring and repetitive tasks

● Can empower scientific researchers to self-manage their software stack

● A platform for collaboration among HPC sites worldwide

● Has become an “expert system” for installing scientific software

EasyBuild in a nutshell
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● Supports fully autonomously installing (scientific) software,

including dependencies, generating environment module files, …

● No admin privileges are required (only write permission to installation prefix)

● Highly configurable, easy to extend, support for hooks, easy customisation

● Detailed logging, fully transparent via support for “dry runs” and trace mode

● Support for using custom module naming schemes (incl. hierarchical)

Key features of EasyBuild (1/2)
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● Integrates with various other tools (Lmod, Singularity, FPM, Slurm, GC3Pie, …)

● Actively developed and supported by worldwide community

● Frequent stable releases since 2012 (every 6 - 8 weeks)

● Comprehensive testing: unit tests, testing contributions, regression testing

● Various support channels (mailing list, Slack, conf calls) + yearly user meetings

Key features of EasyBuild (2/2)

6



Performance

● Strong preference for building software from source

● Software is optimized for the processor architecture of build host (by default)

Reproducibility

● Compiler, libraries, and required dependencies are mostly controlled by EasyBuild

● Fixed software versions for compiler, libraries, (build) dependencies, ...

Community effort

● Development is highly driven by EasyBuild community

● Lots of active contributors, integration with GitHub to facilitate contributions

Focus points in EasyBuild
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● EasyBuild is not YABT (Yet Another Build Tool)

○ It does not try to replace CMake, make, pip, etc.

○ It wraps around those tools and automates installation procedures

● EasyBuild does not replace traditional Linux package managers (yum, dnf, apt, …)

○ You should still install some software via OS package manager

○ Anything that is run with admin privileges and should be updated in-place (OpenSSL, Slurm, etc.)

● EasyBuild is not a magic solution to all your (software installation) problems

○ You may still run into compiler errors (unless somebody worked around it already)

What EasyBuild is not
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● EasyBuild framework defines step-wise installation procedure, leaves some unimplemented

● Easyblock completes the implementation, override or extends installation steps where needed

● Easyconfig file provides the details (software version, dependencies, toolchain, …)

Step-wise installation procedure
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EasyBuild terminology in a nutshell
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The EasyBuild framework leverages easyblocks to automatically build and install 
(scientific) software, potentially including additional extensions, using a particular 
compiler toolchain, as specified in easyconfig files which each define a set of
easyconfig parameters.

EasyBuild ensures that the specified (build) dependencies are in place, and automatically 
generates a set of (environment) modules that facilitate access to the installed software.

An easystack file can be used to specify a collection of software to install with EasyBuild.



● Released on 18 March 2025

● Concludes a development effort that was started in March 2023 (103 weeks)

● 1,364 merged pull requests
(framework: 245, easyblocks: 345, easyconfigs: 804)

● There will be no more EasyBuild 4.x releases,

so you must migrate to EasyBuild v5.x!

● Including backwards-incompatible changes, changes in default configuration, …

● Overview of changes in EasyBuild v5.0: https://docs.easybuild.io/easybuild-v5 

EasyBuild v5.0
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● Linux as operating system (CentOS, RHEL, Ubuntu, Debian, SLES, …)

○ EasyBuild also works on macOS, but support is very basic

● Python 3.6+ (Python 3.9+ recommended)

○ Only Python standard library is required for core functionality of EasyBuild

● An environment modules tool (module command)

○ Default is Lua-based Lmod implementation, highly recommended!

■ On RHEL-based Linux: easy to install Lmod via EPEL

○ Tcl-based implementation (Environment Modules) is also supported

Installing EasyBuild: requirements
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Installing EasyBuild: different options

● Installing EasyBuild using a standard Python installation tool

○ pip install easybuild

○ … or a variant thereof (pip3 install --user , using virtualenv , etc.)

○ May require additional commands, for example to update environment

● Installing EasyBuild as a module, with EasyBuild

○ 2-step “bootstrap” procedure, via temporary EasyBuild installation using pip

● Development setup

○ Clone GitHub repositories: 

easybuilders/easybuild-{framework,easyblocks,easyconfigs}

○ Update $PATH and $PYTHONPATH  environment variables
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Installing EasyBuild: pip install in Python venv
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$ python3 -m venv eb-env
$ source eb-env/bin/activate

(eb-env) $ pip install easybuild archspec rich
Collecting easybuild
…
Installing collected packages: easybuild-framework, easybuild-easyconfigs, 
easybuild-easyblocks, easybuild, archspec, rich, …
Successfully installed archspec-0.2.5 easybuild-5.0.0 
easybuild-easyblocks-5.0.0 easybuild-easyconfigs-5.0.0 
easybuild-framework-5.0.0 rich-14.0.0 …
…
(eb-env) $ eb --version
This is EasyBuild 5.1.1 (framework: 5.1.1, easyblocks: 5.1.1) on host … 



● Check EasyBuild version:

eb --version

● Show help output (incl. long list of supported configuration settings)

eb --help

● Show the current (default) EasyBuild configuration:

eb --show-config

● Show system information:

eb --show-system-info

● Check required (and optional) dependencies:

eb --check-eb-deps

Verifying the EasyBuild installation
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Updating EasyBuild (with pip or EasyBuild)
● Updating EasyBuild (in-place) that was installed with pip:

pip install --upgrade easybuild

(+ additional options like --user, or using pip3, depending on your setup)

● Use current EasyBuild to install latest EasyBuild release as a module:

eb --install-latest-eb-release

         (you may need to install wheel first: pip install wheel)

○ This is not an in-place update, but a new EasyBuild installation!

○ You need to load (or swap to) the corresponding module afterwards:

module load EasyBuild/5.1.1
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● EasyBuild should work fine out-of-the-box if you are using Lmod as modules tool

● … but it will (ab)use $HOME/.local/easybuild  to install software into, etc.

● It is strongly recommended to configure EasyBuild properly!

● Main questions you should ask yourself:

○ Where should EasyBuild install software (incl. module files)?

○ Where should auto-downloaded sources be stored?

○ Which filesystem is best suited for software build directories (I/O-intensive)?

Configuring EasyBuild
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● Most important configuration settings:       (strongly recommended to specify the ones in bold!)

○ Modules tool + syntax (modules-tool  + module-syntax )

○ Software + modules installation path (installpath )*

○ Location of software sources “cache” (sourcepath )*

○ Parent directory for software build directories (buildpath )*

○ Location of easyconfig files archive (repositorypath )*

○ Search path for easyconfig files (robot-paths  + robot)

○ Module naming scheme (module-naming-scheme )

● Several locations* (+ others) can be controlled at once via prefix configuration setting

● Full list of EasyBuild configuration settings (~280) is available via eb --help

Primary configuration settings
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Configuration levels
● There are 3 different configuration levels in EasyBuild:

○ Configuration files (see eb --show-default-configfiles)

○ Environment variables ($EASYBUILD_XYZ)

○ Command line options to the eb command

● Each configuration setting can be specified via each “level” (no exceptions!)

● Hierarchical configuration:
○ Configuration files override default settings

○ Environment variables override configuration files

○ eb command line options override environment variables
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Inspecting the current configuration

● It can be difficult to remember how EasyBuild was configured

● Output produced by eb --show-config is useful to remind you

● Shows configuration settings that are different from default

● Always shows a couple of key configuration settings

● Also shows on which level each configuration setting was specified

● Full current configuration: eb --show-full-config
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$ cat $HOME/config.cfg
[config]
prefix=$HOME/easybuild
buildpath=/tmp/$USER

$ export EASYBUILD_CONFIGFILES=$HOME/config.cfg

$ eb --installpath=/tmp/$USER --show-config
# Current EasyBuild configuration
# (C: command line argument, D: default value,
#  E: environment variable, F: configuration file)
buildpath      (F) = /tmp/ec2-user
configfiles    (E) = /home/ec2-user/config.cfg
containerpath  (F) = /home/ec2-user/easybuild/containers
installpath    (C) = /tmp/ec2-user
packagepath    (F) = /home/ec2-user/easybuild/packages
prefix         (F) = /home/ec2-user/easybuild
repositorypath (F) = /home/ec2-user/easybuild/ebfiles_repo
robot-paths    (D) = /home/ec2-user/eb-env/easybuild/easyconfigs
rpath          (D) = True
sourcepath     (F) = /home/ec2-user/easybuild/sources

Inspecting the current configuration: example
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Basic usage of EasyBuild

● Use eb command to run EasyBuild

● Software to install is usually specified via name(s) of easyconfig file(s), or easystack file

● --robot (-r) option is required to also install missing dependencies (and toolchain)

● Typical workflow:

○ Find or create easyconfig files to install desired software

○ Inspect easyconfigs, check missing dependencies + planned installation procedure

○ Double check current EasyBuild configuration

○ Instruct EasyBuild to install software (while you enjoy a coffee… or two)
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To search for easyconfig files to install (case-insensitive), use eb --search

$ eb --search bcftools

== found valid index for /home/ec2-user/eb-env/easybuild/easyconfigs, so using it...

 * /home/example/eb-env/easybuild/easyconfigs/b/BCFtools/BCFtools-1.12-GCC-10.3.0.eb

 * /home/example/eb-env/easybuild/easyconfigs/b/BCFtools/BCFtools-1.14-GCC-11.2.0.eb

 * /home/example/eb-env/easybuild/easyconfigs/b/BCFtools/BCFtools-1.15.1-GCC-11.3.0.eb

 * /home/example/eb-env/easybuild/easyconfigs/b/BCFtools/BCFtools-1.17-GCC-12.2.0.eb

 * /home/example/eb-env/easybuild/easyconfigs/b/BCFtools/BCFtools-1.18-GCC-12.3.0.eb

 * /home/example/eb-env/easybuild/easyconfigs/b/BCFtools/BCFtools-1.19-GCC-13.2.0.eb

 * /home/example/eb-env/easybuild/easyconfigs/b/BCFtools/BCFtools-1.21-GCC-13.3.0.eb

Search for easyconfigs via eb --search
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Installing software with EasyBuild

● To install software with EasyBuild, just run the eb command:

○ eb BCFtools-1.18-GCC-12.3.0.eb

● If any dependencies are still missing, you will need to also use --robot:

○  eb SAMtools-1.18-GCC-12.3.0.eb --robot

● More details while the installation is running via trace output (default in EasyBuild v5.x)

○ eb BCFtools-1.18-GCC-12.3.0.eb --robot --trace

● To reinstall software, use eb --rebuild  (or eb --force)
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Using software installed with EasyBuild

To use the software you installed with EasyBuild, load the corresponding module:

# inform modules tool about modules installed with EasyBuild

module use $HOME/easybuild/modules/all

# check for available modules for BCFtools

module avail BCFtools

# load BCFtools module to “activate” the installation

module load BCFtools/1.18-GCC-12.3.0
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● To see the contents of an easyconfig file, you can use eb --show-ec

● No need to know where it is located, EasyBuild will do that for you!

$ eb --show-ec BCFtools-1.18-GCC-12.3.0.eb
easyblock = 'ConfigureMake'

name = 'BCFtools'
version = '1.18'

homepage = 'https://www.htslib.org/'
description = """Samtools is a suite of programs for interacting with high-throughput 
sequencing data.
 BCFtools - Reading/writing BCF2/VCF/gVCF files and calling/filtering/summarising SNP and 
short indel sequence
 variants"""

toolchain = {'name': 'GCC', 'version': '12.3.0'}
toolchainopts = {'pic': True}
…

Inspecting easyconfigs via eb --show-ec
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To check which dependencies are required, you can use eb --dry-run --robot

(or eb -D -r or eb -Dr):

● Provides overview of all dependencies (both installed and missing)

● Including compiler toolchain and build dependencies

Checking dependencies via eb --dry-run
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$ eb BCFtools-1.18-GCC-12.3.0.eb -Dr
 ...
 * [x] $CFGS/x/XZ/XZ-5.4.2-GCCcore-12.3.0.eb (module: XZ/5.4.2-GCCcore-12.3.0)

 * [x] $CFGS/g/GSL/GSL-2.7-GCC-12.3.0.eb (module: GSL/2.7-GCC-12.3.0)

 * [x] $CFGS/h/HTSlib/HTSlib-1.18-GCC-12.3.0.eb (module: HTSlib/1.18-GCC-12.3.0)

 * [ ] $CFGS/b/BCFtools/BCFtools-1.18-GCC-12.3.0.eb (module: 

BCFtools/1.18-GCC-12.3.0)



To check which dependencies are still missing, use eb --missing  (or eb -M):

● Takes into account available modules, only shows what is still missing

$ eb BCFtools-1.18-GCC-12.3.0.eb --missing

1 out of 23 required modules missing:

* BCFtools/1.18-GCC-12.3.0 (BCFtools-1.18-GCC-12.3.0.eb)

Checking missing dependencies via eb --missing
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● EasyBuild can quickly unveil how exactly it would install an easyconfig file

● Via eb --extended-dry-run (or eb -x)

● Produces detailed output in a matter of seconds

● Software is not actually installed, shell commands + file operations are skipped!

● Some guesses and assumptions are made, so it may not be 100% accurate…

● Any errors produced by the easyblock are reported as being ignored

● Very useful to evaluate changes to an easyconfig file or easyblock!

Inspecting software install procedures
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$ eb Boost-1.82.0-GCC-12.3.0.eb -x
...

Defining build environment...

  ...

  export CXX='g++'

  export CXXFLAGS='-O2 -ftree-vectorize -march=native -fno-math-errno -fPIC'

  ...

configuring... [DRY RUN]

[configure_step method]

  running shell command "./bootstrap.sh --with-toolset=gcc 

--prefix=/home/example/software/Boost/1.82.0-GCC-12.3.0 --without-libraries=python,mpi"

  (in /tmp/example/build/Boost/1.82.0/GCC-12.3.0)

  ...
30

Inspecting software install procedures: example



Troubleshooting failing installations
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● Sometimes stuff still goes wrong…

● Being able to troubleshoot a failing installation is a useful/necessary skill

● Problems that occur include (but are not limited to):

○ Missing source files

○ Missing dependencies (perhaps overlooked required dependencies)

○ Failing shell commands (non-zero exit status)

○ Running out of memory or storage space

○ Compiler errors (or crashes)

● EasyBuild keeps a thorough log for each installation which is very helpful



● EasyBuild keeps track of the installation in a detailed log file

● During the installation, it is stored in a temporary directory:
$ eb example.eb

== Temporary log file in case of crash /tmp/eb-r503td0j/easybuild-17flov9v.log

...

● Includes executed shell commands and output, build environment, etc.

● More detailed log file when debug mode is enabled (debug configuration setting)

● There is a log file per EasyBuild session, and one per performed installation

● When an installation completes successfully,
the log file is copied to a subdirectory of the software installation directory

Troubleshooting: log files
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● EasyBuild leaves the build directory in place when the installation failed

● Can be useful to inspect the contents of the build directory for debugging

● For example:

○ Check config.log  when configure  command failed

○ Check CMakeFiles/CMakeError.log  when cmake command failed (good luck…)

Troubleshooting: inspecting the build directory
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Troubleshooting with EasyBuild v5.x
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● EasyBuild v5.x makes troubleshooting failing installations significantly easier

● When a shell command run by EasyBuild fails:

○ The problem will be reported in a more user-friendly way

○ You can quickly inspect (only) the output of that command

○ A script is generated to start an interactive shell session to debug “in context”:

in the correct working directory + prepared build environment

● Made possible by switching to new run_shell_cmd function

https://docs.easybuild.io/interactive-debugging-failing-shell-commands

https://docs.easybuild.io/interactive-debugging-failing-shell-commands


EasyBuild 5.x produces clearer error messages when a shell command failed:

ERROR: Shell command failed!

full command          ->  make  -j 8 LDFLAGS='-lfast'

exit code             ->  2

called from           ->  'build_step' function in /.../easyblocks/generic/configuremake.py (line 357)

working directory     ->  /tmp/ec2-user/kenneth/easybuild/build/BCFtools/1.18/GCC-12.3.0/bcftools-1.18

output (stdout + stderr)  ->  /tmp/eb-i61vle8x/run-shell-cmd-output/make-1ynysa6f/out.txt

interactive shell script  ->  /tmp/eb-i61vle8x/run-shell-cmd-output/make-1ynysa6f/cmd.sh

● Colors to draw attention to the most important parts of the error message

● File with (only) command output + path to build directory are easy to find

● Auto-generated cmd.sh script starts interactive subshell in correct build environment!

Improved error reporting in EasyBuild v5.x
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Adding support for additional software

● Every installation performed by EasyBuild requires an easyconfig file

● Easyconfig files can be:

○ Included with EasyBuild itself (or obtained elsewhere)

○ Derived from an existing easyconfig (manually or automatic)

○ Created from scratch

● Most easyconfigs leverage a generic easyblock

● Sometimes using a custom software-specific easyblock makes sense...
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Writing easyconfig files

● Collection of easyconfig parameter definitions (Python syntax),

collectively specify what to install

● Some easyconfig parameters are mandatory, and must always be defined:

name, version , homepage , description , toolchain

● Commonly used easyconfig parameters (but strictly speaking not required):
○ easyblock (by default derived from software name)

○ versionsuffix

○ source_urls, sources, patches, checksums

○ dependencies, builddependencies

○ preconfigopts, configopts, prebuildopts, buildopts, preinstallopts, installopts

○ sanity_check_paths, sanity_check_commands

37https://docs.easybuild.io/writing-easyconfig-files 
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Easyblocks vs easyconfigs
● When can you get away with using an easyconfig leveraging a generic easyblock?

● When is a software-specific easyblock really required?

● Easyblocks are “implement once and forget”

● Easyconfig files leveraging a generic easyblock can become too complicated (subjective)

● Reasons to consider implementing a custom easyblock:

○ 'Critical' values for easyconfig parameters required to make installation succeed

○ Custom (configure) options related to toolchain or included dependencies

○ Interactive commands that need to be run

○ Having to create or adjust specific (configuration) files

○ 'Hackish' usage of a generic easyblock

○ Complex or very non-standard installation procedure
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Exercise on creating easyconfig file from scratch
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● Step-wise example + exercise of creating an easyconfig file from scratch

● For fictitious software packages: eb-tutorial + py-eb-tutorial

● Sources available at 

https://github.com/easybuilders/easybuild-tutorial/tree/main/docs/files 

● Great exercise to work through these yourself!

name = 'eb-tutorial'

version = '1.0.1'

homepage = 'https://easybuilders.github.io/easybuild-tutorial'

description = "EasyBuild tutorial example"

https://tutorial.easybuild.io 

https://github.com/easybuilders/easybuild-tutorial/tree/main/docs/files
https://tutorial.easybuild.io


● Documentation is read all over the world

● HPC sites, consortia, and companies

● Slack: >1000 members,

~180 active members per week

● Bi-weekly online conf calls + yearly user meeting

The EasyBuild community
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EasyBuild User Meeting 2025 (Jülich, Germany)



There are several ways to contribute to EasyBuild, including:

● Providing feedback (positive or negative)

● Reporting bugs

● Joining the discussions (mailing list, Slack, conf calls)

● Sharing suggestions/ideas for enhancements & additional features

● Contributing easyconfigs, enhancing easyblocks,

adding support for new software, implementing additional features, ...

● Extending & enhancing documentation

Contributing to EasyBuild
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● EasyBuild has strong integration with GitHub, which facilitates contributions

● Some additional Python packages required for this: GitPython, keyring

● Also requires some additional configuration, incl. providing a GitHub token

● Enables creating, updating, reviewing pull requests using eb command! 

● Makes testing contributions very easy: ~2,500 easyconfig pull requests per year!

● Extensively documented:

docs.easybuild.io/integration-with-github

GitHub integration features
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metadata is automatically
derived from easyconfig

saves a lot of time!

Opening a pull request in 1, 2, 3
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+ log into GitHub to actually open the pull request (clickety, clickety...)

$ mv sklearn.eb scikit-learn-1.4.2-gfbf-2023a.eb

$ mv scikit-learn*.eb easybuild/easyconfigs/s/scikit-learn

$ git checkout develop && git pull upstream develop

$ git checkout -b scikit_learn_142_gfbf_2023a

$ git add easybuild/easyconfigs/s/scikit-learn

$ git commit -m "{data}[gfbf/2023a] scikit-learn v1.4.2"

$ git push origin scikit_learn_142_gfbf_2023a

eb --new-pr sklearn.eb

one single eb command

no git commands

no GitHub interaction



● Hooks allow you to customize EasyBuild easily and consistently

● Set of Python functions that are automatically picked up by EasyBuild

● Can be used to ”hook” custom code into specific installation steps

● Make EasyBuild use your hooks via hooks configuration option

● Examples:
○ Inject or tweak configuration options

○ Change toolchain definitions

○ Custom checks to ensure that site policies are taken into account

● Extensively documented: docs.easybuild.io/hooks

Customizing EasyBuild via Hooks
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https://docs.easybuild.io/hooks


● EUM’22 talk by Alex: Building a heterogeneous MPI stack with EasyBuild

https://easybuild.io/eum22/#eb-mpi

● contrib/hooks subdirectory in easybuild-framework GitHub repository:

https://github.com/easybuilders/easybuild-framework/tree/develop/contrib/hooks

Hooks: examples
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Ensure that software is installed with a specific license group:

def parse_hook(self, *args, **kwargs):

if self.name == 'example':

    # use correct license group for software ‘example’

            self['group'] = 'licensed_users_example'

Hooks: examples

46Kenneth



● An easyblock may be required for more complex software installations

● This requires some Python skills, and familiarity with EasyBuild framework

● A software-specific easyblock can derived from a generic easyblock

● Focus is usually on configure/build/installs steps of installation procedure

● See also https://docs.easybuild.io/implementing-easyblocks

Implementing Easyblocks

47Kenneth

https://docs.easybuild.io/implementing-easyblocks


● EasyBuild can distribute the installation of a software stack as jobs on a cluster

● Slurm is the default job backend in EasyBuild v5.x

● Use “eb … --job --robot” to submit software installations

to be performed with EasyBuild as Slurm jobs

● See also https://docs.easybuild.io/submitting-jobs

Submitting Installations as Slurm Jobs

48Kenneth

https://docs.easybuild.io/submitting-jobs


● Website: https://easybuild.io

● Documentation: https://docs.easybuild.io

● Tutorials: https://tutorial.easybuild.io

● EasyBuild User Meeting: https://easybuild.io/eum (slides+recording of all talks available!)

● Getting help:

○ Mailing list: https://lists.ugent.be/wws/subscribe/easybuild

○ Slack: https://easybuild.slack.com - https://easybuild.io/join-slack

○ Bi-weekly conference calls: https://github.com/easybuilders/easybuild/wiki/Conference-calls

Questions?
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SSE2 AVX AVX2 AVX512

GROMACS built for...

● Software should be optimized for the system it will run on (keep the P in HPC!)

● Impact on performance is often significant for scientific software!

Optimized scientific software installations
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• Example: GROMACS 2020.1
(PRACE benchmark, Test Case B)

• Metric: (simulated) ns/day,
higher is better

• Test system: dual-socket
Intel Xeon Gold 6420
(Cascade Lake, 2x18 cores)

• Performance of different 
GROMACS binaries,
on exact same hardware/OS



● Explosion of available scientific software applications (bioinformatics, AI boom, …)

● Increasing interest in cloud for scientific computing (flexibility!)

● Increasing variety in processor (micro)architectures beyond Intel & AMD:
Arm is coming already here (see Fugaku, JUPITER, …), RISC-V is coming (soon?)

● In strong contrast: available (wo)manpower in HPC support teams is (still) limited…

The changing landscape of scientific computing
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https://www.r-ccs.riken.jp/en/fugaku/
https://www.hpcwire.com/off-the-wire/eurohpc-amplifies-european-research-and-industry-with-unleashing-jupiters-exascale-potential/


5252

What if you no longer have to install 

a broad range of scientific software 

from scratch on every laptop, HPC cluster,

or cloud instance you use or maintain,

without compromising on performance? 



● European Environment for Scientific Software Installations (EESSI)

● Shared repository of (optimized!) scientific software installations

● Avoid duplicate work across (HPC) sites by collaborating on a shared software stack

● Uniform way of providing software to users, regardless of the system they use!

● Should work on any Linux OS and system architecture
○ From laptops and personal workstations to HPC clusters and cloud

○ Support for different CPUs, interconnects, GPUs, etc.

● Focus on performance, automation, testing, collaboration
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EESSI in a nutshell

https://www.eessi.io/docs/ 

Caspar

https://www.eessi.io/docs/


Major goals of EESSI
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● Providing a truly uniform software stack

○ Use the (exact) same software environment everywhere

○ Without sacrificing performance for “mobility of compute”
(like is typically done with containers/conda)

● Avoid duplicate work (for researchers, HPC support teams, sysadmins, …)

○ Tools that automate software installation process
(EasyBuild, Spack) are not sufficient anymore

○ Go beyond sharing build recipes => work towards a shared software stack

● Facilitate HPC training, development of (scientific) software, …
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High-level overview of EESSI

Host operating system   
   

   
 T

es
tin

g
Software layer

Optimized applications + dependencies

Filesystem layer
Distribution of the software stack

Compatibility layer
Levelling the ground across client OSs

Host OS 
provides
network 
& GPU 
drivers,

resource 
manager 
(Slurm), 

...



Filesystem Layer

Global distribution of 
software installations

via CernVM-FS

EESSI ingredients
Optimized software

installations for specific
CPU microarchitectures

Intuitive user interface:
module avail,
module load, …

Automatic selection of
best suited part of
software stack for

CPU microarchitectures   

Compatibility layer

Abstraction from the
host operating system
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Software Layer



● Software installations included in EESSI are:

○ Automatically “streamed in” on demand (via CernVM-FS)

○ Built to be independent of the host operating system

“Containers without the containing”

○ Optimized for specific CPU generations + specific GPU types

● Initialization script auto-detects CPU + GPU of the system 

How does EESSI work?
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Lara

EESSI as a shared software stack



Currently > 1,000 software installations available per supported CPU target

via software.eessi.io CernVM-FS repository; increasing every week

● 13 (+1) supported CPU targets (x86_64 + Arm),
see https://eessi.io/docs/software_layer/cpu_targets 

● Over 500 different software packages,
excl. extensions: Python packages, R libraries

● Over 15,000 software installations in total

● Including ESPResSo, GROMACS, LAMMPS,
OpenFOAM, PyTorch, R, QuantumESPRESSO,
TensorFlow, waLBerla, WRF, …

● eessi.io/docs/available_software/overview

● Using foss/2023a and foss/2023b toolchains in EESSI 2023.06

● Using foss/2024a and foss/2025a toolchains in EESSI 2025.06
5959

Overview of available software in EESSI

https://eessi.io/docs/software_layer/cpu_targets
http://eessi.io/docs/available_software/overview


Getting access EESSI via CernVM-FS (demo)
  

  # Native installation
# Installation commands for RHEL-based distros

# like CentOS, Rocky Linux, Almalinux, Fedora, …

# install CernVM-FS

sudo yum install -y 

https://ecsft.cern.ch/dist/cvmfs/cvmfs-release/cvmfs-release-latest.noarch.rpm

sudo yum install -y cvmfs

# create client configuration file for CernVM-FS 

# (no proxy, 10GB local CernVM-FS client cache))

sudo bash -c "echo 'CVMFS_CLIENT_PROFILE="single"' > /etc/cvmfs/default.local"

sudo bash -c "echo 'CVMFS_QUOTA_LIMIT=10000' >> /etc/cvmfs/default.local"

# Make sure that EESSI CernVM-FS repository is accessible

sudo cvmfs_config setup

60
Alternative ways of accessing EESSI are available, via a container image, via cvmfsexec, …
eessi.io/docs/getting_access/native_installation - eessi.io/docs/getting_access/eessi_container

http://eessi.io/docs/getting_access/native_installation
http://eessi.io/docs/getting_access/eessi_container


The EESSI User Experience

Local client cache Mirror server

$ source /cvmfs/software.eessi.io/versions/2023.06/init/bash

{EESSI 2023.06} $ module load GROMACS/2024.1-foss-2023b

{EESSI 2023.06} $ gmx mdrun ...

Central server

EESSI provides on-demand streaming

of (scientific) software (like music, TV-series, …)
61Kenneth



Using EESSI (demo)
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eessi.io/docs/using_eessi/eessi_demos

/cvmfs/software.eessi.io/versions/2023.06/software

`-- linux

    |-- aarch64

    |   |-- a64fx

    |   |-- generic

    |   |-- neoverse_n1

    |   |-- neoverse_v1

    |   `-- nvidia/grace

    `-- x86_64

        |-- amd

        |   |-- zen2

        |   |-- zen3

        |   `-- zen4

        |-- generic

        `-- intel

            |-- cascadelake

            |-- haswell

            |-- icelake

            |-- haswell

            `-- sapphirerapids

                |-- modules

                `-- software

$ source /cvmfs/software.eessi.io/versions/2023.06/init/bash

Found EESSI pilot repo @ 

/cvmfs/software.eessi.io/versions/2023.06!

archdetect says x86_64/amd/zen3

Using x86_64/amd/zen3 as software subdirectory

...

Environment set up to use EESSI pilot software stack, have fun!

{EESSI 2023.06} $ module load R/4.3.2-gfbf-2023a

{EESSI 2023.06} $ which R

/cvmfs/software.eessi.io/versions/2023.06/software/linux/x86_64/

amd/zen3/software/R/4.3.2-gfbf-2023a/bin/R

{EESSI 2023.06} $ R --version

R version 4.3.2

Automatically detects CPU microarchitecture 

https://www.eessi.io/docs/using_eessi/eessi_demos


Website: https://eessi.io

Join our Slack channel (see join link on website)

Documentation: https://eessi.io/docs 

Blog: https://eessi.io/docs/blog 

GitHub: https://github.com/EESSI

Paper (open access): https://doi.org/10.1002/spe.3075 

EESSI YouTube channel

Bi-monthly online meetings
(first Thursday, odd months, 2pm CEST)

https://www.eessi.io
https://eessi.io/docs
https://eessi.io/docs/blog
https://github.com/EESSI
https://doi.org/10.1002/spe.3075
https://www.youtube.com/channel/UCKLS5X7_oMWhUrAZuzSwBxQ
https://github.com/EESSI/meetings/wiki


5 Mondays in a row May-June 2025
https://eessi.io/docs/training/2025/webinar-series-2025Q2 

○ Introduction to EESSI

○ Introduction to CernVM-FS

○ Introduction to EasyBuild

○ EESSI for CI/CD (26 May)

○ Using EESSI as the base for a system stack (2 June)

Slides + recordings available
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Webinar series: Different aspects of EESSI

https://eessi.io/docs/training/2025/webinar-series-2025Q2
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Web page: multixscale.eu

Facebook: MultiXscale

Twitter: @MultiXscale

LinkedIn: MultiXscale

                              BlueSky: MultiXscale
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