
Managing a Large-Scale HPC Infrastructure:

Production environment

and monitoring

Sept. 25th, 2025

Alessandro Marani (a.marani@cineca.it)

Daniele Di Bari (d.dibari@cineca.it)
Orlenys Troconis (o.troconis@cineca.it)

––

User Support & Production Team

High Performance Computing Dept.

• Disclaimer and Recap

• Storage Areas and Data Transfer

• Software environment

• Production environment with Slurm: the user point of view

• Production environment with Slurm: the administrator point of view

• Cluster monitoring: Sanity checks

• Cluster monitoring: Interconnect network tests

PRESENTATION
OUTLINE

NRRP MUR – M4C2Project “National Centre for HPC, Big Data and Quantum Computing” - CUP D56G22000380006

Disclaimer: the idea behind these talks
We are part of the User Support and Production team of Cineca. Our job is to:

- Being the direct interface with our users, answering their
requests and assisting them with the problems they face in our
clusters;

- Take care of all the production aspects of our environment,
deciding the use policies, setting up the configuration and
make sure that all the users can have a good experience in a
shared environment

This is a Dev-Ops school, but we are not sysadmins. What we can do is to share

our knowledge as User Support members, reminding that a good user

experience is the final goal.

We show you our solutions to many problems: they may not be the best, or the

most suited for your specific needs, but at least we hope they can be of

inspiration :-)

Recap: the architecture of Leonardo

▪ Currently 10th Top500

▪ HPL 241,20 PF

▪ 4992 nodes based on BullSequana

XH2000 platform technology

(3456 GPU + 1536 CPU)

▪ Computing racks: 95% Direct Liquid

Cooled

▪ Data storage: >100PB (NVMe+HDD)

▪ NVIDIA Mellanox HDR 200 interconnect

Dragonfly+ topology

Booster module:
1xIntel 8538 processor (32 cores) + 4 NVIDIA A100 custom GPUs
DCGP module:
2xIntel 8540+ processors (112 cores total)

Recap: our userbase

5308 active users (December 2023)

34% from outside Italy

- Many important projects at an European level
(EUROFusion, EUROHPC, Human Brain Project, …)

Recap: Becoming a user and first access
• Ways to Get Resources: mainly via peer-reviewed calls (national or international), with

exceptions for commercial agreements.

• Application Process: Submission of a proposal detailing the scientific use case, resources

needed, time usage, and codes to be run. Proposals are reviewed for scientific quality and

technical feasibility.

Once you gain an HPC username, you can

configure the two-factor authentication process

and login via ssh to one of the frontend nodes of

Leonardo, in round-robin fashion

Recap: Accounting and budget linearization

Account (different from username):

- Identifies the resource allocation which you can use for your work.

- A budget is associated with an account and reports how many resources

(computing hours) are available on each cluster.

- An amount of storage is also associated with an account, available on the $WORK

space

- The account budget and storage is shared between all the users that are associated

to the account (collaborators).

Accounted Resources(cpus-h)= Reserved Cores eq.(cpus)• Elapsed Time(h)

Budget linearization (more on that later):

Every account has a monthly quota (total_budget / total_no_of_months). When users start to

consume the account budget, the jobs submitted from the account will gradually lose

priority, until the monthly budget is fully consumed.

When this happens, you can still run jobs (so it is possible to consume more than the

monthly quota each month), but these jobs will have the lowest priority.

• Disclaimer and Recap

• Storage Areas and Data Transfer

• Software environment

• Production environment with Slurm: the user point of view

• Production environment with Slurm: the administrator point of view

• Cluster monitoring: Sanity checks

• Cluster monitoring: Interconnect network tests

PRESENTATION
OUTLINE

NRRP MUR – M4C2Project “National Centre for HPC, Big Data and Quantum Computing” - CUP D56G22000380006

Filesystems

$HOME

• 50 GB per user

• User specific

• Permanent (till user is active)

• Daily backup (soon)

$WORK

• Quota per account (default 1TB)

• Account specific

• Permanent (account + 6 month)

• No backup

$SCRATCH

• No quota

• User specific

• Temporary (data will be removed

after 40 days, and no backup)

$PUBLIC

• 50 GB per user

• User specific (permissions 755)

• Permanent (till user is active)

• No backup
Data resources (DRES)

Shared area among different

projects platforms.

Local SSD storage (3TB)

Exploitable in jobs via $TMPDIR

(SLURM directive).

Serial & DCGP only.

All the filesystems are based

on Lustre

$FAST

Same rules then WOR with

Faster R/W SSD)

Filesystems

Check your areas, disk usage and quota: $ cindata

Or the more recent cinquota that updates in real time

Area location (full path) Last update of

cindata
ID User

occupied

space

User

quota

User

occupied

space

(%)

Shared usage

and quota for the

whole account

Datamover and Data transfer

Main features

➢ No cpu-time limit on processes

➢ Service is containerized and based on restricted GNU shell RUSH

● It is not possible to connect directly to the datamover, but the commands must be executed remotely

● Connection allowed only with valid SSH certificate (2FA), no other private/public keys allowed

● Connection from a CINECA login node does not require SSH certificate (Hostbased authentication enabled)

➢ Only few commands are accepted: scp, rsync, sftp, wget, curl

➢ Environment variables are not defined ($HOME, $WORK, $CINECA_SCRATCH)

● You have to specify the absolute path location of the files

➢ All storage areas of the cluster are visible

Hostname: data.<clustername>.cineca.it

Datamover and Data transfer

Usage examples: moving data to/from an external machine with rsync or scp
(e.g. your PC, a non-CINECA cluster…)

$ rsync -PravzHS /absolute/path/from/file <username>@data.<cluster_name>.cineca.it:/absolute/path/to/

$ rsync -PravzHS <username>@data.<cluster_name>.cineca.it:/absolute/path/from/file /absolute/path/to/

$ scp /absolute/path/from/file <username>@data.<cluster_name>.cineca.it:/absolute/path/to/

$ scp <username>@data.<cluster_name>.cineca.it:/absolute/path/from/file /absolute/path/to/

• Disclaimer and Recap

• Storage Areas and Data Transfer

• Software environment

• Production environment with Slurm: the user point of view

• Production environment with Slurm: the administrator point of view

• Cluster monitoring: Sanity checks

• Cluster monitoring: Interconnect network tests

PRESENTATION
OUTLINE

NRRP MUR – M4C2Project “National Centre for HPC, Big Data and Quantum Computing” - CUP D56G22000380006

Module environment
Any available software is offered on Leonardo in a module environment.

The modules are organized in functional categories and collected in different profiles.

Installed software

Module

Category

Profile

Base is the default profile:

automatically loaded after login,

containing basic modules

for programming activitiesCompilers

Libraries

Tools

Applications

Programming (base): compilation, profiling, debugging…

Profiles <-->Domain (chem-phys, lifesc, deeplrn): production activities

Module environment
$ module av

Module environment
$ module av

Module environment
Loading a module Define or modify the environment variables, allowing to

use the executable or libraries

$ module show <module_name>/<version> Prints information about the module: dependencies, paths

$ module load namd/3.0--gcc--12.2.0-cuda-12.1

Installed with spack

$ module load profile/chem-phys

$ module load namd/3.0--gcc--12.2.0-cuda-12.1

$ module help namd/3.0--gcc--12.2.0-cuda-12.1

Module environment

The script example will be different in

other cluster(s)

How to find a module that I do not know in which profile is it?

$ modmap -m <module_name> a command that looks for a module in all profiles

Module environment

Same version but

different compilers

…

Is it important?

• Disclaimer and Recap

• Storage Areas and Data Transfer

• Software environment

• Production environment with Slurm: the user point of view

• Production environment with Slurm: the administrator point of view

• Cluster monitoring: Sanity checks

• Cluster monitoring: Interconnect network tests

PRESENTATION
OUTLINE

NRRP MUR – M4C2Project “National Centre for HPC, Big Data and Quantum Computing” - CUP D56G22000380006

Since beginning of 2018 – migration from PBSpro to Slurm

WHY?

- analysis of schedulers/resource managers proved that SLURM was

already a robust tool to manage resources and schedule jobs in hybrid
architectures (thinking of ongoing trends in HPC)

- analysis of CINECA production environment core pillars (managing

different communities with specific requests, huge loads of jobs - 1000+

avg in an hour, fair use of resources) proved that SLURM was quite easily

compliant with our needs

SLURM @ CINECA -1

- as all supercomputing centers, CINECA follows the HPC

architectures development, resulting in adopting new, even
prototype architectures

- as one cluster is dismissed, no guarantee that the new cluster
will be similar to the previous one (quite the opposite actually)

- once devised the general scheduler configuration suitable to

CINECA's production needs, it's now a near zero effort to set up

the production environment (partitions, QOS, scheduler

parameters, resource management) for hybrid and more and
more complex architectures

SLURM @ CINECA -2

#!/bin/bash

#SBATCH -t 1:00:00

#SBATCH -N 2

#SBATCH --ntasks-per-node=16

#SBATCH --cpus-per-task=2

#SBATCH --gres=gpu:4
#SBATCH --mem=10GB

#SBATCH -o job.out

#SBATCH -e job.err
#SBATCH -p boost_usr_prod

#SBATCH -A <my_account>

module load openmpi/4.1.4--gcc--11.3.0-cuda-11.8
export OMP_PROC_BIND=true

mpirun -n 32 ./myprogram

Jobscript example

#SBATCH --nodes=1, -N 1

#SBATCH --ntasks-per-node=8

#SBATCH --cpus-per-task=4
#SBATCH --mem=10000 # mem=0 equals to full memory

nodes – number of compute nodes
ntasks-per-node – number of tasks per node (max. 32 for Booster, 112 for DCGP)
cpus-per-task – number of cpus to be assigned to each task

BOOSTER: ntasks-per-node*cpus-per-task ≤ 32
DCGP: ntasks-per-node*cpus-per-task ≤ 112

mem – memory allocated for each node (max=494000 MB).

Slurm directives:
resource requirements

Booster:

#SBATCH --gres=gpu:4
gres=gpu:x – number of GPUs for each node (x=1..4)

Slurm directives:
General resources (GRES)

DCGP and serial:

#SBATCH --gres=tmpfs:200G
gres=tmpfs:x – quota of temporary filesystem /tmp local to the node, that can be
requested on serial and DCGP nodes (maximum: 1TB for serial, 3TB for DCGP.
Default=10GB)

Slurm directives:
walltime and partitions

#SBATCH --time=00:30:00, -t 00:30:00

Specifies the maximum duration of the job. The maximum time allowed

depends on the partition used

Pro-tip: the less walltime you ask, the faster your job will enter in
execution. Think about it!

#SBATCH --partition=boost_usr_prod, -p boost_usr_prod
#SBATCH --qos=boost_qos_dbg, -q boost_qos_dbg (optional)

Specifies the “partition”, a.k.a. the specific set of nodes among which

your job can search for resources. Optionally you can specify a QoS

(Quality of Service) for jobs with particular purposes, like debugging or
large production

Some definitions General structure

➢ Partitions: very few → we define a single

partition with all compute nodes and rely on

QOS to satisfy the request of different

communities.

➢ QOS: quite a rich variety to manage the variety

of jobs’types.

➢ FairShares: linearized-ish use of resources on

a monthly scale to ensure that all users can use

the granted hour budgets while enforcing a

democratic use of resources.

➢

➢ Sheduler Parameters: backfill, packing of

serial jobs (flag: pack_serial_at_end), etc. to

optimize/maximize the use of resources.

Partitions and QoS: General structure

➢ Modules or hardware partition: a group of nodes that

have similar hardware features (CPUs, GPUs).

➢ Slurm partitions: a set of nodes that are regrouped to

represent the hardware partitions at Slurm level.

➢ Quality of Service (QoS): parameters that set the

limitations on partitions or on jobs.

➢ Partition QoS: QoS attached to the Slurm partition, to

setup some usage limits.

➢ Compute nodes may belong to multiple Slurm

partitions, each with their own partition QOS.

➢ Job QoS: a QoS that can be added to the job to

overcome some limitations, but may add other (ex: no

more than 1 job running with this QoS)

We rely a lot on QoS to be able to keep our clusters constantly filled with users 24/7, while looking

after the special needs that some may have, asking for an help with binding some rules when

necessary.

Examples include:

qos_bprod: for jobs of bigger size, a QoS is set with a minimum requirement of resources and a
large new maximum. These jobs have high priority but no more than 1 or 2 are allowed at the

same time, to avoid the monopoly of the cluster;

qos_lprod: for jobs of bigger walltime. Regular QoS allow for up to 24h for fairshare reasons, but for

some works (e.g. molecular dynamics) it may not be enough;

qos_dbg: jobs with less than two hours of walltime and two nodes can use an high priority QoS for

debugging purposes;

qos_lowprio: if your budget is depleted or your time is expired, you can use a qos for continue
running with no charge: however, your priority is so low that your job is considered only if there are
no other "legit" jobs in queue;

qos_special: an user can ask for this if they need a longer walltime or a very high number of

nodes. We stipulate with them the number of jobs that they can submit and remove the QoS

when the work is done.

QOS FOR FLEXIBILITY

Available partitions and QoS on
LEONARDO Booster

Note:
- the partition lrd_all_serial runs on front-end nodes, and as such it is not subject to
accounting and can be used for free

Available partitions and QoS on
LEONARDO DCGP

Notes:
Note:
- a maximum of 512 nodes per account is imposed, meaning that, all the jobs associated with
a particular account cannot run on more than 512 nodes at the same time.

#SBATCH --account=<my_account>, -A <my_account>
Specifies the account to use the CPU hours from.

You can check the status of your account with the command “saldo -b”, which tells you how
many CPU hours you have already consumed for each account you’re assigned at (a more
detailed report is provided by “saldo -r”).

Slurm directives: accounting

Note: for DCGP projects, the command is “saldo -b/-r --dcgp"

Submitting a job

You have created your jobscript! Congratulations!!!
…now, what to do with it?

sbatch
 sbatch <job_script>
Your job will be submitted to the SLURM scheduler and executed when there will be nodes
available (according to your priority and the partition you requested)

squeue -u
 squeue -u <username>, squeue --me
Shows the list of all your scheduled jobs, along with their status (idle, running, closing, …)
It also shows you the job id required for other SLURM commands

scontrol show job
 scontrol show job <job_id>
Provides a long list of informations for the job requested.
In particular, if your job isn’t running yet, you'll be notified about the reason it is not starting
and, if it is scheduled with top priority, you will get an estimated start time

scancel
 scancel <job_id>, scancel --me
Removes the job(s) (queued or running) from the scheduled job list by killing them

Other Slurm commands - 1

Other Slurm commands - 2

sinfo
sinfo -p <partition name>
sinfo -l
sinfo -N -l -p boost_usr_prod

Provides information about SLURM nodes and partitions

sacct
sacct OPTIONS <job_id>
sacct -e (for the list of format options)

displays accounting data for all jobs and job steps in the SLURM job accounting log or Slurm
database. Can also see the jobs already completed or cancelled

Keep in mind that you are using computing nodes,
meaning that you are consuming compute hours!

To exit from an interactive session, just type “exit”
(easy to forget with salloc)

Interactive batch jobs

• Disclaimer and Recap

• Storage Areas and Data Transfer

• Software environment

• Production environment with Slurm: the user point of view

• Production environment with Slurm: the administrator point of view

• Cluster monitoring: Sanity checks

• Cluster monitoring: Interconnect network tests

PRESENTATION
OUTLINE

NRRP MUR – M4C2Project “National Centre for HPC, Big Data and Quantum Computing” - CUP D56G22000380006

- partitions: very few -> we now tend to define a single physical partition with all nodes, and
rely on logical partitions and their QOS to deal with the requests of different communities

- QOS: quite a rich variety of them to manage the quite rich variety of jobs' types -> debug,
big/long production, etc. QOS priorities and appropriate QOS's GRES limits

scheduler parameters: backfill, packing of serial jobs, preemption etc. to optimize/maximize
the use of resources

- fairshares: linearized-ish use of resources on a monthly scale to ensure that all users can

use the granted hour budgets while enforcing a democratic use of resources

- in-house slurmd prologs/epilogs: for temporary job's areas, for safely loading/unloading
drivers when needed by jobs - e.g., intel sep drivers or system power monitoring - , for system
managed nvidia mps, etc.

GENERAL STRUCTURE (repeat)

Problem: There are two partitions insisting on the same nodes: dcgp_usr_prod and

dcgp_cmcc_prod.

The first is for all users, the second is for a contracted community that needs 165 DCGP

nodes always available for them

- Standard solution: dedicated partition. The community gets a new partition with

dedicated nodes, separated from the rest.

- Problem: if one of those node breaks, they are left with one node less of what is
contracted, until we intervene by fixing the nodelist of the partition

Our solution:

Defining both partitions so that they both insist on all the DCGP nodes, then manage the

request via job qos parameters

DYNAMIC PARTITIONING

This is the equivalent of 1243 nodes. Users can fill up the regular partition until that limit is

touched.

DYNAMIC PARTITIONING

This partition can't occupy more than 165 nodes, but most importantly, since dcgp_usr_prod

is limited they will always find those 165 nodes at their disposal throughout the physical

partition.

That way, even if a node breaks it isn't bound to a dedicated partition and the users can find

the resources nonetheless

NOTE: broken nodes are removed from the dcgp_usr_prod count by procedures developed
by the vendor technical team

Slurm user roles
A quick check with Slurm commands show that there are different levels of privileges as Slurm users on a cluster

A regular Slurm user can:
Submit jobs, monitor the queue, cancel only their own jobs, use report commands, …

A Slurm Operator (User Support) can:
Setup reservations, prioritize any job, cancel jobs of everyone, …

A Slurm Administrator (Root/Sysadmins) can:
Create partitions and qos, setup qos parameters and limits, ...

SLURM

You can manage your staff and alleviate part of your own workload by setting up Slurm roles within the team

Slurm.conf
Want to take a peek?

/var/spool/slurmd/conf-cache/slurm.conf

Part of the scheduling parameters. Check out the high presence of backfill parameters, an

important system to keep the cluster occupied as much as possible

Production partitions. Nodenames are not hard-coded, but are dynamic (part of the system

setup by the vendors discussed earlier).

Check out also other interesting configuration files in that folder: gres.conf, topology.conf and many others

PRIORITY FORMULA AND PARAMETERS

The weights are set so that the parameters have an order of importance

QOS

FairShare

Age

JobSize

Example:

Two jobs in the same partition and same qos ==> compete in terms of FairShare

Two jobs on different qos ==> the job in the qos with higher priority wins

regardless of the other weights

Formula: QOSWeight*QOSValue + FSWeight*FSValue+AgeWeight*AgeValue+JobSizeWeight*JobSizeValue

Budget linearization
Why we need to implement a budget linearization ?

➢ We want to encourage the users to spend their resources regularly, to

avoid the situation where a project doesn't consume budget for months

and then tries to spend all of it in a few days, without success.

➢ High number and variety of users → 5308 active users at the end of 2023

➢ Variety of project with different budget sizes and duration

EUROHPC

Try projects

ISCRA’s

EUROFUSION

Agreements

➢ We need to avoid big budget projects/users to monopolize the use of the clusters in

order to be more democratic with all of our users.

Fairshare and shares administration

Budget linearization is administered via fairshare (remember the priority parameters in
slurm.conf)
We wrote a procedure that assigns to each project a number of RawShares proportional to the number

of CPU hours they have to spend. While the project families act as a "father" to the accounts related to it,

we want the fair-share to not take in consideration neither the relationship between father and son, nor

the relationship between the siblings, because any account should have its own personal budget
represented by its own personal number of shares...

To guarantee fairness, the script that sums the raw shares of each account belonging to the same family,

and assigns that number to the father, instead of the default "1". In this way there is a proportion between

fathers as well as between sons, so the global proportion is respected."

So many other topics...

- Populating the Slurm database via LDAP consulting

- Managing exceptions to the rules via special QoS or reservations

- Prologs, epilogues and job_submit.lua

- Slurm gres for profiling tools and Perf permissions

- ...and much more! But let's stop here for now, shall we? :-)

• Disclaimer and Recap

• Storage Areas and Data Transfer

• Software environment

• Production environment with Slurm: the user point of view

• Production environment with Slurm: the administrator point of view

• Cluster monitoring: Sanity checks

• Cluster monitoring: Interconnect network tests

PRESENTATION
OUTLINE

NRRP MUR – M4C2Project “National Centre for HPC, Big Data and Quantum Computing” - CUP D56G22000380006

Cluster monitoring – collecting data
https://www.hpc.cineca.it/

Data collected through repetitions of Slurm monitoring commands via cronjob, and
elaborated into a graph through a dashboard

Sempahore informing users of the general health status of the cluster

Cluster monitoring – the User Support way

We surely all agree that monitoring constantly the health state of the
cluster is important in order to maintain a stable environment and avoid
events like general performance slowdowns or crashes for unknown
reasons

While vendors and sysadmins have their own tools for checking the state and the
performance of all nodes, sometimes there is something that escapes because those tests
cannot detect it

It's up to the User Support team to perform regular regression tests and sanity
checks through all the available nodes of the cluster, and notify system
administrators of eventual nodes that have to be brought down of production for
further analysis

Sanity checks

User Support performs a series of synthetic benchmarks called "Sanity checks" at the end of every
maintenance time, and sometimes during production (though it takes a lot to complete with jobs on
regular queues)

Jobs are launched on all the available nodes of the cluster, and results are then collected to an
unique file for consulting.

The tests include:
GPU Nodes
- gpuburn for 60 seconds;
- Dgemm matrix multiplication test for single GPU performance;
- BabelStream GPU for memory bandwidth;
- Host2Device and Device2Host CPU-GPU bandwidth with nvbandwidth;
- P2p GPU-GPU communication bandwidth with nvbandwidth.
CPU and GPU nodes
- Linpack (Intel optimized version included with mkl installation);
- Stream for memory bandwidth.
Other
- Multinode HPL on nodes connected on the same L1 switch;
- Login nodes healthness (connection attempt, basic commands working, packages installed fine);
- IOR tests for filesystem I/O stress.

Sanity checks

Eventual nodes with problems get tested again, and after the third strike are notified to the
sysadmins.

The nodes will be put under reservation and out of production, and after repairment they will be
retested and brough back in

If the user notifies problems on a specific node, the User Support can create a reservation on the
node, test it and report the results to sysadmins in case of failures.

• Disclaimer and Recap

• Storage Areas and Data Transfer

• Software environment

• Production environment with Slurm: the user point of view

• Production environment with Slurm: the administrator point of view

• Cluster monitoring: Sanity checks

• Cluster monitoring: Interconnect network tests

PRESENTATION
OUTLINE

NRRP MUR – M4C2Project “National Centre for HPC, Big Data and Quantum Computing” - CUP D56G22000380006

INTERCONNECT PERFORMANCES
Algorithm Used

3

1

2

7

46
5

0

8

9

2

9

1

6

35
4

0

7

8

1

8

9

5

24
3

0

6

7

1st ROUND 2nd ROUND 3rd ROUND

n NODEs n/2 PAIRs n-1 PERMUTATIONsx ~n2 COMBINATIONs

n-1 ROUNDs* n/2 INDEPENDENT PAIRsof

*one per each permutation

n-1 COMPLEXITY

INTERCONNECT PERFORMANCES
Bidirectional Bandwith Measurements

200 NODES 2,000 NODES

INTERCONNECT PERFORMANCES
Bidirectional Bandwith Measurements

200 NODES 2,000 NODES

INTERCONNECT PERFORMANCES
Bidirectional Bandwith Measurements

200 NODES

Documentation
Our userguide goes into more depth about all the aspects described
during this presentation. In particular, we suggest:
https://docs.hpc.cineca.it/hpc/leonardo.html#leonardo-card
Production environment on LEONARDO

https://docs.hpc.cineca.it/hpc/leonardo.html#file-systems-and-data-managment
Work areas and filesystem

https://docs.hpc.cineca.it/hpc/hpc_scheduler.html

Scheduler and job submission

https://docs.hpc.cineca.it/hpc/hpc_enviroment.html
Software environment

Thank you
NRRP MUR – M4C2Project “National Centre for HPC, Big Data and Quantum Computing” - CUP D56G22000380006

https://docs.hpc.cineca.it/hpc/leonardo.html#leonardo-card
https://docs.hpc.cineca.it/hpc/leonardo.html#leonardo-card
https://docs.hpc.cineca.it/hpc/leonardo.html#leonardo-card
https://docs.hpc.cineca.it/hpc/leonardo.html#leonardo-card
https://docs.hpc.cineca.it/hpc/leonardo.html#leonardo-card
https://docs.hpc.cineca.it/hpc/leonardo.html#leonardo-card
https://docs.hpc.cineca.it/hpc/leonardo.html#leonardo-card
https://docs.hpc.cineca.it/hpc/leonardo.html#leonardo-card
https://docs.hpc.cineca.it/hpc/leonardo.html#leonardo-card
https://docs.hpc.cineca.it/hpc/leonardo.html#leonardo-card
https://docs.hpc.cineca.it/hpc/leonardo.html#file-systems-and-data-managment
https://docs.hpc.cineca.it/hpc/leonardo.html#file-systems-and-data-managment
https://docs.hpc.cineca.it/hpc/leonardo.html#file-systems-and-data-managment
https://docs.hpc.cineca.it/hpc/leonardo.html#file-systems-and-data-managment
https://docs.hpc.cineca.it/hpc/leonardo.html#file-systems-and-data-managment
https://docs.hpc.cineca.it/hpc/leonardo.html#file-systems-and-data-managment
https://docs.hpc.cineca.it/hpc/leonardo.html#file-systems-and-data-managment
https://docs.hpc.cineca.it/hpc/leonardo.html#file-systems-and-data-managment
https://docs.hpc.cineca.it/hpc/leonardo.html#file-systems-and-data-managment
https://docs.hpc.cineca.it/hpc/leonardo.html#file-systems-and-data-managment
https://docs.hpc.cineca.it/hpc/leonardo.html#file-systems-and-data-managment
https://docs.hpc.cineca.it/hpc/leonardo.html#file-systems-and-data-managment
https://docs.hpc.cineca.it/hpc/leonardo.html#file-systems-and-data-managment
https://docs.hpc.cineca.it/hpc/leonardo.html#file-systems-and-data-managment
https://docs.hpc.cineca.it/hpc/leonardo.html#file-systems-and-data-managment
https://docs.hpc.cineca.it/hpc/leonardo.html#file-systems-and-data-managment
https://docs.hpc.cineca.it/hpc/hpc_scheduler.html
https://docs.hpc.cineca.it/hpc/hpc_scheduler.html
https://docs.hpc.cineca.it/hpc/hpc_scheduler.html
https://docs.hpc.cineca.it/hpc/hpc_scheduler.html
https://docs.hpc.cineca.it/hpc/hpc_scheduler.html
https://docs.hpc.cineca.it/hpc/hpc_scheduler.html
https://docs.hpc.cineca.it/hpc/hpc_scheduler.html
https://docs.hpc.cineca.it/hpc/hpc_scheduler.html
https://docs.hpc.cineca.it/hpc/hpc_enviroment.html
https://docs.hpc.cineca.it/hpc/hpc_enviroment.html
https://docs.hpc.cineca.it/hpc/hpc_enviroment.html
https://docs.hpc.cineca.it/hpc/hpc_enviroment.html
https://docs.hpc.cineca.it/hpc/hpc_enviroment.html
https://docs.hpc.cineca.it/hpc/hpc_enviroment.html
https://docs.hpc.cineca.it/hpc/hpc_enviroment.html
https://docs.hpc.cineca.it/hpc/hpc_enviroment.html
https://docs.hpc.cineca.it/hpc/hpc_enviroment.html
https://docs.hpc.cineca.it/hpc/hpc_enviroment.html

	Diapositiva 1: Managing a Large-Scale HPC Infrastructure: Production environment and monitoring
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56

