
FROM THE CLI TO THE BROWSER: OPEN ONDEMAND

MAKING HPC EASY TO ACCESS
Hugo R Hernández (virtual)

Kingston, Jamaica – September 25, 2025

LATIN AMERICA HIGH PERFORMANCE COMPUTING
CONFERENCE

spinTwo @ CARLA 2025

AGENDA

Introduction

Open OnDemand Technical Deep Dive

Deployment, Automation, and Performance

Security and Best Practices

Integration Scenarios

Summary

Q & A

3

INTRODUCTION: OPEN ONDEMAND

What is Open OnDemand (OOD)?
• Open-source HPC portal developed by Ohio

Supercomputer Center (OSC)

• Provides a web-based interface to HPC clusters

• Eliminates need for CLI-only workflows

Why is it relevant?
▪ Lowers barrier for HPC adoption (researchers, students,

industry)

▪ Access HPC resources from any browser, anywhere

▪ Supports interactive apps (Jupyter, RStudio, MATLAB,

VNC desktops)

▪ Integrates with Slurm and other schedulers for job

submission

▪ Streamlines file management, job monitoring, and

collaboration

▪ Enables Single Sign-On (SSO) integration for secure,

seamless user access

Key Features
▪ Zero installation: run OOD entirely in your browser

▪ Easy to use; start computing immediately

▪ Shell access through the browser, no SSH client needed

▪ Run graphical apps on the cluster, view them in the

browser

▪ Seamless data management

▪ Submit, monitor, and cancel Slurm jobs

▪ Extensive framework for developers

spinTwo @ CARLA 2025

spinTwo @ CARLA 2025

INTRODUCTION: WHO ARE WE?

spinTwo delivers cutting-edge optimization solutions powered by advanced

supercomputing technologies

▪ U.S.-based HPC and scientific computing experts; office in Colombia

▪ Secure, optimized, and scalable HPC environments

▪ Combines scientific domain knowledge with technical expertise

Focus areas
• HPC cluster design & management

• AI-driven solutions

• Remote desktop and GUI optimization

• Secure data environments

• Workflow optimization for interactive and batch jobs

• HPC security assessments

Your Strategic Partner in HPC Solutions! Build, Optimize, and Accelerate

5spinTwo @ CARLA 2025

PARTNER ECOSYSTEM

spinTwo is partnering with leading technology providers to deliver a complete HPC and AI

environment, combining seamless access, interactive applications, and scalable workload

management.

⚙ Ohio Supercomputing Center – Open OnDemand: Browser-based HPC portal, job submission, file management,

interactive apps

⚙ Cendio – ThinLinc: High-performance remote desktop solution, GPU-optimized for interactive apps

⚙ SchedMD – Slurm & Slinky: HPC workload manager for batch and interactive jobs, scalable to large clusters,

with seamless integration between Kubernetes and HPC environments.

⚙ VAST Data: AI-ready, high-performance storage for fast, reliable access to large datasets

6spinTwo @ CARLA 2025

OPEN ONDEMAND ARCHITECTURE

▪ Apache is the server front end, running as the Apache user,

and accepting all requests from users and serves four

primary functions:

1. Authenticates user

2. Starts Per-User NGINX processes (PUNs)

3. Reverse proxies each user to her PUN via Unix domain

sockets

4. Reverse proxies to interactive apps running on compute nodes

(RStudio, Jupyter, VNC desktop) via TCP sockets

▪ The Per-User NGINX serves web apps in Ruby and NodeJS

and is how users submit jobs and start interactive apps.

https://osc.github.io/ood-documentation/latest/architecture.html

Web Server Layer: Apache/Nginx + Passenger, Ruby on Rails

Batch Scheduler Layer: Slurm, PBS, LSF

Interactive Apps Layer: Jupyter, RStudio, MATLAB, VNC/ThinLinc

Storage Layer: NFS, Lustre, GPFS, Object storage, Globus

Authentication Layer: LDAP, OAuth2, Shibboleth, PAM, SSO via OIDC

spinTwo @ CARLA 2025

DEPLOYING OPEN ONDEMAND VIA ANSIBLE
https://github.com/OSC/ood-ansible

7

▪ Automated Deployment: Ansible playbooks install and configure OOD

across OOD server(s). Prepare HPC nodes with required packages

▪ Configuration Management: Centralized control of web server,

authentication, storage, and scheduler settings

▪ Reproducible & Repeatable: Ensures consistent OOD environments across

clusters, minimizing manual errors

▪ Integration Ready: Easily configure SSO, OIDC, Slurm, and storage systems

▪ Scalable Updates: Apply updates or new modules to all nodes in one step

Open OnDemand is deployed and configured using

Ansible, which automate the installation process,

apply system-wide configurations, and ensure

consistent environments across HPC clusters.

This approach streamlines setup, reduces manual

errors, and makes it easier to maintain and update

over time.

├── ood_install.yml
├── inventory.yml
├── overrides.yml
├── vars-common.yml
├── vars-prod.yml
├── roles/
│ └── post-install/
└── README.md

Repository Structure:

spinTwo @ CARLA 2025

PLAYBOOK BREAKDOWN

8

Playbook Breakdown
The playbook install_ood.yml runs two roles:

Role Installation
To install the official OOD Ansible role from Ansible Galaxy:

ansible-galaxy role install osc.open_ondemand

This installs the role into your Ansible roles path (default: ~/.ansible/roles/)

The ood_post_install role handles custom modifications

after the base OOD installation, such as:

▪ Adding site-specific branding & logos

▪ Configuring user mapping

▪ Customizing the dashboard & interactive apps

▪ Any additional site-wide tweaks

- name: Deploy OOD
 hosts: ood-head
 become: true
 vars_files:
 - vars-common.yml
 roles:
 - role: osc.open_ondemand
 - role: ood_post_install

The osc.open_ondemand role installs and

configures Open OnDemand. This includes:

▪ Package installation

▪ Apache and Passenger setup

▪ OOD portal configuration

Running the Playbook

ansible-playbook -i inventory.yaml ood_install.yml \
 -J --extra-vars=@overrides.yml \
 --extra-vars=@ood-secrets

where the file overrides.yml provides the values to customize the installation
and ood-secrets.yml is a Vault encrypted file containing OIDC secrets.

9spinTwo @ CARLA 2025

AUTHENTICATION & SINGLE SIGN-ON
Open OnDemand supports secure, browser-based login via Single Sign-On (SSO) using OpenID Connect (OIDC).

This allows users to authenticate with:
▪ University SSO providers for federated login (e.g., Shibboleth/SAML, AzureAD)

▪ LDAP / Active Directory integration – centralized user management for traditional authentication

▪ Google accounts (with domain restriction)

▪ Federated logins via a broker like Keycloak

The OIDC configuration is defined in /etc/ood/config/ood_portal.yml. The main parameters are:
▪ oidc_uri: /oidc – route authentication requests/responses and mount OIDC endpoint

▪ oidc_provider_metadata_url: Discovery URL for IdP configuration (e.g., authorization endpoint)

▪ oidc_client_id & oidc_client_secret: Registers OOD as a client with your IdP (Keycloak, Azure AD, Google, Okta, etc.)

▪ oidc_remote_user_claim: Defines which claim from the ID token (e.g., preferred_username, email) maps to REMOTE_USER in OOD

Create and encrypt ood-secrets.yml
You can create the encrypted file outright using :

ansible-vault create ood-secrets.yml

or alternatively create a text file, then encrypt it:

ansible-vault encrypt ood-secrets.yml

values associated to the creation of `/etc/ood/config/ood_portal.yaml`
httpd_port: 443

Use OIDC for authentification
httpd_auth:
 - "AuthType openid-connect"
 - "Require valid-user"

OIDC Parameters
oidc_uri: "/oidc"
oidc_provider_metadata_url: "https://accounts.google.com/.well-known/openid-configuration"

oidc_client_id: "{{ vault_oidc_client_id }}"
oidc_client_secret: "{{ vault_oidc_client_secret }}"

oidc_remote_user_claim: email # spinTwoOrgUserId << if your org has in place its own SSO method
oidc_scope: "openid profile email"
oidc_session_inactivity_timeout: 28800
oidc_session_max_duration: 28800
oidc_state_max_number_of_cookies: "10 true"

10spinTwo @ CARLA 2025

AUTHENTICATION & SINGLE SIGN-ON (CONT.)

https://ondemand.spintwo.org/

2

1. Public page on Apache server

2. IdP (Google in our case)

3. Authenticated area of OOD

OIDC Discovery:

• OOD is configured with Google’s OIDC discovery URL:

https://accounts.google.com/.well-known/openid-configuration
• This URL provides Google’s authentication endpoints, token endpoints, and public keys.

User Login Flow:

• A user visits OOD → redirected to

Google’s login page.

• After successful authentication,

Google issues an ID token and

access token.

Identity Mapping:

• The ID token includes user identity claims (e.g.,

email, sub, preferred_username).

• OOD uses the configured

oidc_remote_user_claim (often email) to map

the Google identity to a local HPC account.

3

Access Granted:

• OOD now recognizes the authenticated

user and grants them access to the HPC

portal.

1

11spinTwo @ CARLA 2025

FILE MANAGEMENT AND STORAGE

Add these filesytems to the Dashboard
filesystems:
 - name: Lustre Filesystem

 path: /shared/users/#{User.new.name}
 - name: VAST Shares
 path: /vast/#{User.new.name}

ood_portal.yml

Web-Based File Management:

Browse, upload, download, and

edit files on HPC storage directly

from your browser

▪ Integration with HPC Filesystems: Supports NFS, Lustre, GPFS, and

other mounted storage

▪ No Separate PUN Required: Runs through the main OOD portal,

unlike interactive apps

▪ Secure Access: Respects user permissions and integrates with LDAP,

OIDC, or other authentication methods

▪ Convenience for Researchers: Enables quick access to data without

SSH or command-line tools

Note: OOD’s File app has no built-in mechanism to
show recall progress from archiving systems like

tapes. This could confuse users unless documented.

Runs within the main OOD web server:

Apache/Nginx + Passenger + Ruby on Rails

Caution: staging delays can affect UX when accessing offline data!

12spinTwo @ CARLA 2025

SUBMITTING AND MONITORING BATCH JOBS

▪ Web-Based Job Management: Submit, monitor, and manage

HPC jobs via a browser interface

▪ Supports Multiple Schedulers: Slurm, PBS, LSF

▪ Job Templates & Custom Scripts: Easily create and reuse batch

scripts for common workflows

▪ Status & Monitoring: Visualize job states, logs, and resource

usage

Edit batch scripts directly in the OOD portal before

submitting jobs, without using a separate editor or

SSH session.

Cancel running or

queued jobs directly

from the OOD portal

with a click.

Submit jobs using existing batch

scripts directly from the OOD portal,

no SSH required.

13spinTwo @ CARLA 2025

SLURM CONFIGURATION
[root@ood-head clusters.d]# cat slurm.yml

v2:
 metadata:
 title: slurm_test
 login:
 host: hpc.spintwo.org
 job:
 adapter: slurm
 bin: /hpc/apps/slurm/default/bin/
 batch_connect:
 min_port: 30000
 max_port: 30999
 basic:
 script_wrapper: |
 module purge
 %s
 vnc:
 script_wrapper: |
 module purge
 export PATH="/opt/TurboVNC/bin:$PATH"
 export WEBSOCKIFY_CMD="/usr/bin/websockify"
 %s

Key Points
▪ v2: ensures that OOD interprets the YAML according to

the newer Batch Connect syntax and features

▪ metadata: human-friendly info for the portal (title,

description, etc.)

▪ host: the login node or head node for Slurm

▪ job: defines how OOD interacts with the job scheduler

▪ batch_connect: configures interactive session options

(like basic shell or VNC) and TCP port ranges

▪ basic: defines a simple interactive session type for the

Batch Connect app

▪ script_wrapper: defines the shell commands that

wrap around the user’s submitted commands (%s is

replaced by the user’s commands)

14spinTwo @ CARLA 2025

MULTI-CLUSTERS
[root@ood-head ~]# cat /etc/ood/config/clusters.d/slurm.yml
clusters:
 dirac: |
 v2:
 metadata:
 title: dirac
 login:
 host: dirac.spintwo.org
 job:
 adapter: slurm
 bin: /hpc/apps/slurm/default/bin/
 cluster: dirac
 batch_connect:
 min_port: 30000
 max_port: 30999
 basic:
 script_wrapper: |
 module purge
 module python/3.11
 module cuda/12.1
 %s
 vnc:
 script_wrapper: |
 module purge
 export PATH="/opt/TurboVNC/bin:$PATH"
 export WEBSOCKIFY_CMD="/usr/bin/websockify"
 %s

#
Second cluster
 feynman: |
 v2:
 metadata:
 title: feynman
 login:
 host: feynman.spintwo.org
 job:
 adapter: slurm
 bin: /hpc/apps/slurm/default/bin/
 cluster: feynman
 batch_connect:
 min_port: 30000
 max_port: 90999
 basic:
 script_wrapper: |
 module purge
 module gcc/12
 module openmpi/4.1.5
 %s
 vnc:
 script_wrapper: |
 module purge
 export PATH="/opt/TurboVNC/bin:$PATH"
 export WEBSOCKIFY_CMD="/usr/bin/websockify"
 %s

15spinTwo @ CARLA 2025

VIRTUAL SHELL

OOD provides users with access into a virtual shell, a web-based terminal interface to the HPC clusters. It allows

secure, browser-based command-line access to login or compute nodes without needing a separate SSH client.

This feature enables users to manage files, run commands, monitor jobs, and interact with the system remotely and

conveniently through the OOD portal.

The SSH access to compute nodes is controlled by two env vars in

/etc/ood/config/apps/shell/env:

▪ OOD_DEFAULT_SSHHOST: this is the node to SSH from the clusters-

>shell access button. This can also be set in the cluster

configuration under login. This can be a load-balanced login node.

▪ OOD_SSHHOST_ALLOWLIST: list of nodes to which SSH is allowed

from a running job. This is where you'd land if you click on the node

name of your interactive session. This should be colon separated

list of GLOBs.

node_glob: "node000[1-9].spinTwo.org:node001[0-9].spintwo.org:node0020.spintwo.org”
ood_apps:
 shell:
 env:
 # restrict ssh access to this nodes
 ood_sshhost_allowlist: "{{ blade_glob }}:{{ node_glob }}:{{ rin_glob }}:{{ int_glob }}"

vars-prod.yml

16spinTwo @ CARLA 2025

PORTAL CUSTOMIZATION

Landing Page

Set the landing page
root_uri: "{{ '/public/ood_landing.html' if landing.create else none }}"
landing:

 create: true
 title: "Welcome to the spinTwo OnDemand Portal"
 logo: "{{ logos.dashboard | basename }}"
 login_button: "Login"
 notification: |

 <center>NOTIFICATION</center>

 This is your notification...
Behave

The Open OnDemand landing page welcomes

users to the spinTwo portal with a custom

title, logo, and notification banner. From

here, users authenticate using the SSO login

button, ensuring a simple and consistent

entry point to HPC resources.

vars-common.yml

set logout; redirect_uri must be urlencoded
logout_redirect: "/oidc?logout=https%3A%2F%2F{{ servername }}%2Fpublic%2Flogout.html"logout:
 logo: "{{ logos.dashboard | basename }

17spinTwo @ CARLA 2025

PORTAL CUSTOMIZATION (CONT.)

Welcome Page

The Welcome Page provides a customized

greeting with the portal logos, a welcome

message, and a brief description. It can also

display the Message of the Day (MOTD) to

share important announcements or updates

with users (in this case the HPC Rules).

custom_welcome_html: |
 %{logo_img_tag}
 <p class="lead"> Welcome to spinTwo onDemand. Enjoy your HPC
Resources</p>
 <p>Our customized OOD welcome page</p>

Display Message of the Day in /etc/motd-ood
motd_render_html: true

Setup branding
ood_ondemand_d_configs:
 branding:
 content:
 dashboard_title: spinTwo OnDemand
 dashboard_logo: "/public/{{ logos.dashboard | basename }}"
 brand_bg_color: "{{ branding_color }}"
 dashboard_logo_height: 250
 dashboard_header_img_logo: "/public/{{ logos.header | basename }}"

vars-common.yml

18spinTwo @ CARLA 2025

PORTAL CUSTOMIZATION (CONT.)

Help and Footer

footer:
 org_link: "https://spintwo.com"
 logo: /public/{{ logos.dashboard | basename }}

 logo_alt: spinTwo OnDemand
 links:
 - href: "mailto:hpc-admin@spintwo.com"
 text: "Need help?"
 - href: "https://www.spintwo.com/general/accessibility"

 text: "Accessibility"
 - href: "https://www.spintwo.com/privacy"
 text: "Privacy"
 info:
 - "Responsible Official: Hugo Hernandez”

Define the help menu
help_menu:
 - group: "Internal Pages"
 - title: "Accessibility"

 icon: "fas://book"
 url: "https://spintwo.com/accessibility/"
 new_tab: true
 - title: "Privacy"
 icon: "fas://window-restore"

 url: "https://spintwo.com/privacy/"
 new_tab: true

vars-common.yml
The Help menu and Footer provide users

with quick access to documentation,

support, and important portal links,

ensuring guidance and resources are

always available from any page.

- group: "HPC Tools"
 - page: slurm-script-generator
 icon: "fas://book"
 title: "Slurm Script Generator"
 new_tab: true

 custom:
 content:
 custom_pages:
 slurm-script-generator:
 rows:
 - columns:
 - width: 12
 widgets:
 - slurm-script-generator

Slurm Script Generator

19spinTwo @ CARLA 2025

PORTAL CUSTOMIZATION (CONT.)

Announcements
Let administrators share important messages, updates, or alerts directly in the

portal, keeping HPC users informed and aligned with policies and schedules.

type: warning
dismissible: false
msg: |
 <% if Time.now < Time.new(2025, 9, 26, 12, 0, 0) %>
 A 4-hour **HPC Downtime** has been scheduled for Sept
26, 2025 starting at 6am. During this time no new jobs
will be scheduled on the spinTwo cluster.
 <% end %>

Announcements are stored in /etc/ood/config/announcements.d/

These are managed manually by

sysadmins and are not controlled

through Ansible automation.

The announcement message about the 4-hour HPC downtime will only

be displayed if this condition is true, i.e., before the specified cutoff time.

20spinTwo @ CARLA 2025

PER-USER NGINX (PUN)
A PUN (Per-User NGINX) in Open OnDemand is a dedicated, lightweight NGINX web server process

that runs for each logged-in user. A PUN is the bridge between OOD’s main web portal and the

user’s HPC environment

▪ User-Specific Web Server: When a user logs in, OOD starts an

NGINX instance that runs under that user’s account.

▪ Security & Permissions: Because the PUN inherits the user’s Unix

identity, it enforces the same file permissions and quotas the user

has on the HPC system.

▪ Session Manager: The PUN serves the user’s web sessions (e.g.,

launching Jupyter, RStudio, or VNC desktops).

▪ Isolation: Each user’s PUN is independent—so one user’s

applications or crashes don’t affect another’s.

▪ Scalability: This design allows hundreds or thousands of users to

run interactive apps simultaneously without interfering with each

other.
https://osc.github.io/ood-documentation/latest/architecture.html

The Front-end proxy is the only component that is shared with all clients. The Front-end proxy will create
PUN processes (light blue boxes labeled "Per User Instance").

21spinTwo @ CARLA 2025

INTEGRATION SCENARIOS

Interactive Apps
A menu for launching graphical applications (e.g., Jupyter, RStudio, remote

desktop) on compute nodes through the job scheduler.

Key Points

▪ Launch Applications from Browser: Run Jupyter, RStudio, MATLAB, VNC/ThinLinc without SSH

▪ Per-User NGINX (PUN) Processes: Each session runs in an isolated environment for security and

resource separation

▪ Port Allocation: Dynamic TCP ports assigned for each session automatically

▪ Seamless HPC Integration: Connects directly to cluster nodes and batch schedulers

▪ Containers: Containerized apps for reproducibility (Singularity/Docker)

22spinTwo @ CARLA 2025

ENABLED APPS

https://openondemand.org/run-open-ondemand#enabled-applications

Open OnDemand supports a wide range of enabled

applications—everything from data visualization and

modeling tools to scientific and domain-specific software.

These are pre-installed or made available through the portal

so users can launch them directly without manual setup or

installation.

Considerations

▪ Dependencies & Modules – ensuring required software libraries and environment

modules are available and compatible

▪ HPC Integration – mapping app launchers to the scheduler (Slurm, PBS, etc.) and

compute nodes

▪ GPU/CPU Requirements – properly configuring resources and matching host

capabilities

▪ Licensing & Access Control – handling commercial software licenses and user

restrictions

▪ User Experience – customizing launch forms and ensuring apps open seamlessly

in a web browser

23spinTwo @ CARLA 2025

my_app/
├── form.yml
├── manifest.yml
├── submit.yml.erb
├── template
│ ├── before.sh.erb
│ └── script.sh.erb
└── completed.{md,html}.erb

▪ form.yml: defines html form for application launch

▪ manifest.yml: Application metadata

▪ submit.yml.erb: Scheduler job submission script
▪ templates

• before.sh.erb: Runs before the main (submission) script.

Set passwords, environmental variables, etc

• script.sh.erb: Main script launched by the scheduler

▪ completed.md.erb: Optional. Defines additional information

presented in the session card

Defining Applications

DEFINING YOUR OWN APPS

Open OnDemand allows administrators to define custom interactive apps—domain-specific tools—by

creating simple YAML and script templates. This makes it easy to integrate new software into the portal

and provide users with consistent, browser-based access.

Create OOD app structure

Hint: Developers can prepare and share custom apps in Open OnDemand by packaging job

templates, forms, and scripts, enabling users to launch applications directly from the portal

without manual configuration.

Enable the developer sandbox for these users

developers:

 - eduardo

 - hugo vars-common.yml

Turn your app as global:

cp –r ~/ondemand/dev/MyCoolApp /var/www/ood/apps/sys/.

Set the right permissions!

24spinTwo @ CARLA 2025

VIRTUAL DESKTOP

1

2

3

1. Request desired resources via Slurm

2. Wait for resources to be available

3. Launch virtual desktop

25spinTwo @ CARLA 2025

VIRTUAL DESKTOP (CONT.)

▪ The virtual desktop in Open OnDemand runs on a dedicated HPC compute node

▪ When a user launches a session, OOD allocates a node and starts a PUN process that launches

the desktop environment (VNC or ThinLinc)

▪ The session uses the node’s CPU or GPU resources, providing full access to HPC and visualization

while keeping the user environment isolated and secure

GPU-enabled virtual desktops provide hardware-accelerated

graphics, supporting OpenGL visualization for faster rendering

and a full high-end graphical experience.

Launched sessions can be resumed based on their requested runtime

Key Points

Logging out

terminates your job

26spinTwo @ CARLA 2025

SETTING UP JUPYTER NOTEBOOK

help([[Jupyter Notebook/Lab]])

whatis("Name: Jupyter")
whatis("Version: 1.0")
whatis("Category: tools")
whatis("Description: Jupyter Notebook and Lab environment")

-- Path to virtualenv or conda environment
local jupyter_root = "/shared/hpc_apps/conda/envs/jupyter-env/"

-- Prepend binary path
prepend_path("PATH", pathJoin(jupyter_root, "bin"))

-- Optional: Add man or lib paths
-- prepend_path("MANPATH", pathJoin(jupyter_root, "share/man"))

-- Optional: Set env vars
setenv("JUPYTER_PATH", pathJoin(jupyter_root, "share/jupyter"))

#!/usr/bin/env bash

Benchmark info
echo "TIMING - Starting main script at: $(date)"

Set working directory to home directory
cd "${HOME}"

#
Start Jupyter Notebook Server
#

Benchmark info
echo "TIMING - Starting jupyter at: $(date)"

module purge
Launch the Jupyter Notebook Server
set -x

module load jupyter/1.0
jupyter lab --no-browser --config="${CONFIG_FILE}" <%= context.extra_jupyter_args %>

jupyter/template/script.sh.erb

Application Module Files

OOD Sys application

jupyter/1.0.lua

App defined in your HPC system to be run from OOD

OOD application template

jupyter/
├── form.yml
├── manifest.yml
├── submit.yml.erb
├── template
│ ├── before.sh.erb
│ └── script.sh.erb
└── completed.{md,html}.erb

27spinTwo @ CARLA 2025

SETTING UP JUPYTER NOTEBOOK

Batch Connect app configuration file
#
@note Used to define the submitted cluster, title, description, and
hard-coded/user-defined attributes that make up this Batch Connect app.
--- description: |
This app will launch a Jupyter Notebook server on the Dirac slurm cluster.

cluster: "slurm”
form:
 - auto_accounts
 - global_node_type
 - global_partition
 - bc_num_hours
 - cores
 - memory
 - gpus
 - server_type
 - working_dir
 - bc_email_on_started
Define attribute values that aren't meant to be modified by the user
within
the Dashboard form
attributes:
 cores:
 widget: "number_field”
 label: "Number of cores”
 value: "1”
 min: 1
 step: 1

memory:
 widget: "number_field”
 label: "Memory per Core (GB)”
 help: "Memory per core requirement”
 min: 1
 max: 8
 step: 1
 required: true
 value: "4”
 gpus:
 widget: "number_field”
 label: "Number of GPUs”
 help: "Number of GPUs. Min 1, Max 4”
 min: 1
 max: 4
 step: 1
 server_type:
 label: "Jupyter Server type”
 widget: select
 options:
 - ["lab", "lab"]
 - ["notebook", "notebook"]
 working_dir:
 widget: "path_selector”
 label: "Working Directory”
 data-target-file-type: dirs # Valid values are: files, dirs, or both
 readonly: false help: "Select your project directory; defaults to $HOME”

form.yml
Defines the job form, where dynamic JS attributes adjust options in real-time—e.g.,

enabling GPU choices only when a GPU partition is selected—ensuring correct Slurm job

submission.

jupyter/
├── form.yml
├── manifest.yml
├── submit.yml.erb
├── template
│ ├── before.sh.erb
│ └── script.sh.erb
└── completed.{md,html}.erb

jupyter/form.yml

28spinTwo @ CARLA 2025

SETTING UP JUPYTER NOTEBOOK

--- title:
”Dirac Desktop App”
cluster:slurm
batch_connect:
 template: vnc
 min_port: 30000
 max_port: 60000

script:
 native:
 - "-N 1”
 - "-n <%= cores.to_i %>”
 - "--mem-per-cpu=<%= memory %>G”
 - "--partition=<%= partition %>_<%= global_node_type %>”
 <%- if bc_email_on_started -%>
 - "--mail-user=<%= ENV['USER'] %>@spintwo.org”
 <%- end %>

jupyter/submit.yml.erb

jupyter/
├── form.yml
├── manifest.yml
├── submit.yml.erb
├── template
│ ├── before.sh.erb
│ └── script.sh.erb
└── completed.{md,html}.erb

submit.yml.erb
Translates user inputs from the form into Slurm directives. It dynamically

generates the sbatch submission script—e.g., inserting partition, CPUs,

memory, or GPU options—so jobs run with the resources selected in the portal.

29spinTwo @ CARLA 2025

SETTING UP JUPYTER NOTEBOOK

--- title:
”Dirac Desktop App”
cluster:slurm
batch_connect:
 template: vnc
 min_port: 30000
 max_port: 60000

script:
 native:
 - "-N 1”
 - "-n <%= cores.to_i %>”
 - "--mem-per-cpu=<%= memory %>G”
 - "--partition=<%= partition %>_<%= global_node_type %>”
 <%- if bc_email_on_started -%>
 - "--mail-user=<%= ENV['USER'] %>@spintwo.org”
 <%- end %>

jupyter/submit.yml.erb

jupyter/
├── form.yml
├── manifest.yml
├── submit.yml.erb
├── template
│ ├── before.sh.erb
│ └── script.sh.erb
└── completed.{md,html}.erb

submit.yml.erb
Translates user inputs from the form into Slurm directives. It dynamically

generates the sbatch submission script—e.g., inserting partition, CPUs,

memory, or GPU options—so jobs run with the resources selected in the portal.

spintwo

Dirac

/scratch/users/hugo/jupyter

30spinTwo @ CARLA 2025

SETTING UP JUPYTER NOTEBOOK

help([[Jupyter Notebook/Lab]])

whatis("Name: Jupyter")
whatis("Version: 1.0")
whatis("Category: tools")
whatis("Description: Jupyter Notebook and Lab
environment")

-- Path to virtualenv or conda environment
local jupyter_root = "/shared/hpc_apps/conda/envs/jupyter-
env/"

-- Prepend binary path
prepend_path("PATH", pathJoin(jupyter_root, "bin"))

-- Optional: Add man or lib paths
-- prepend_path("MANPATH", pathJoin(jupyter_root,
"share/man"))

-- Optional: Set env vars
setenv("JUPYTER_PATH", pathJoin(jupyter_root,
"share/jupyter"))

#!/usr/bin/env bash

Benchmark info
echo "TIMING - Starting main script at: $(date)"

Set working directory to home directory
cd "${HOME}"

#
Start Jupyter Notebook Server
#

Benchmark info
echo "TIMING - Starting jupyter at: $(date)"

module purge
Launch the Jupyter Notebook Server
set -x

module load jupyter/1.0
jupyter lab --no-browser --config="${CONFIG_FILE}" <%= context.extra_jupyter_args %>

jupyter/template/script.sh.erbApplication Module Files
OOD Sys application

jupyter/1.0.lua

31spinTwo @ CARLA 2025

PERFORMANCE AND MONITORING
Open OnDemand provides tools to monitor HPC jobs, interactive sessions, and system performance,

with options for tuning, caching, logging, and real-time metrics.

▪ Job Monitoring: View job status, runtime, and resource usage (CPU, memory, GPU) via the Jobs App

▪ Interactive Session Monitoring: Track active Batch Connect apps and virtual desktops

▪ Rails & NGINX Tuning: Optimize Rails thread pool and enable NGINX caching for faster portal response

▪ Job & GPU Metrics: Track job submission latency and GPU/CPU utilization

▪ Logging & Integration: Rails logs, portal logs, centralized logging with ELK/Graylog

▪ Cluster Metrics Dashboards: Prometheus and Grafana visualize node load, memory, disk, and network usage

▪ Performance Optimization: Helps users adjust job parameters or module loads for better efficiency

▪ WebSocket Connections: Monitor active connections to the OOD portal

https://discourse.openondemand.org/t/ondemand-exporter-grafana-dashboard-websocket-metrics/4265

https://cfp.openondemand.org/2025/talk/PBSAAB/

32spinTwo @ CARLA 2025

XDMOD INTEGRATION

https://osc.github.io/ood-documentation/latest/customizations.html#xdmod-integration

1) In /etc/ood/config/nginx_stage.yml, specify the XDMoD host URL:

pun_custom_env:
 OOD_XDMOD_HOST: "https://xdmod.spintwo.org"

2) In XDMoD's /etc/xdmod/portal_settings.ini, configure the CORS domains

to permit requests from the OOD portal:

[cors] domains = "https://ondemand.spintwo.org"

3) Ensure both OOD and XDMoD are configured to use the same Identity

Provider (IdP) for SSO. This setup allows users to authenticate once and access

both platforms without additional logins.

4) To display XDMoD job metrics in the OOD dashboard, modify the dashboard

layout configuration:

/etc/ood/config/ondemand.d/ondemand.yml

dashboard_layout:

rows:

- columns:

- width: 8

widgets:

- pinned_apps

- motd

- width: 4

widgets:

- xdmod_widget_ job_efficiency

- xdmod_widget_ jobs

XDMoD (XD Metrics on Demand) provides detailed monitoring

and reporting for HPC systems. Integrating it with OOD enables

users and admins to track job efficiency, resource usage, and

system performance from the portal

33spinTwo @ CARLA 2025

XDMOD INTEGRATION (CONT.)

https://osc.github.io/ood-documentation/latest/customizations.html#xdmod-integration

5) In each cluster configuration file add the XDMoD resource ID:

custom:
 xdmod:
 resource_id: 1

Replace 1 with the actual resource ID assigned to the cluster in XDMoD.

6) In the Job Composer, Open XDMoD job links will include a warning

message that the job may not appear in XDMoD for up to 24 hours after the

job completed. The message is to address the gap of time between the job

appearing as completed in the Job Composer and the job appearing in Open

XDMoD after the ingest and aggregation script is run.

en:

 jobcomposer: xdmod_url_warning_message: "This job may not appear in Open XDMoD until 24 hours after the completion of the job."

 xdmod_url_warning_message_seconds_after_ job_completion: 86400

34spinTwo @ CARLA 2025

SECURITY CONSIDERATIONS
Ensuring secure access to HPC resources requires encryption, controlled user permissions, and

careful management of sessions and data.

Backend Service Communication: Client-to-server traffic uses TLS, but connections to backend services (e.g., Jupyter, VS

Code) currently use unencrypted HTTP. The OOD team is working to secure these internal connections.

Reverse Proxy Injection Risk: Enabling reverse proxying can allow malicious URL injection. This risk is mitigated by setting a

strict host_regex in Apache to allow only defined backend nodes, ideally including their domain for maximum security.

Secure Proxy: Only allow nodes with the host_regex regex pattern to servers via proxy (in /etc/ood/config/ood_portal.yml):

node_uri: "/node"
rnode_uri: "/rnode"

host_regex: node\d+\.spintwo\.com'

Interactive Application Credentials: Each OOD app can generate random passwords for sessions, stored in plain text in the

user’s job directory. Because these are human-readable, they must be treated as sensitive. Proper permissions and secure

filesystem configuration are critical to prevent unauthorized access to running applications and their data.

Restrict SSH key authentication whenever possible by controlling usage, minimizing risk, and protecting cluster security.

Open OnDemand is built with security as a foundational principle, supporting robust authentication and

minimizing risks through per-user NGINX (PUN) sessions that run as the authenticated user rather than root.

35spinTwo @ CARLA 2025

BEST PRACTICES
The following are considered fundamental actions or configurations that should be followed to ensure a

successful and secure deployment of OOD:

▪ Verifying hardware and software compatibility ensures a stable environment for

OOD to function correctly. This is crucial to avoid compatibility issues.

▪ Using HTTPS, secure authentication methods (SSO, LDAP, MFA), and logging

practices are foundational to protecting users and the system from unauthorized

access and breaches.

▪ Keep your oidc_client_id and oidc_client_secret secured.

▪ Version control your configuration. Use Git to track changes to yml files and app

configurations. Automate with Ansible and CI/CD pipelines.

▪ Use the latest stable version of Open OnDemand available (via the OOD YUM

repository).

▪ Ensure the file permissions inside ~/ondemand and other accessible per user

directories are set correctly to only allow the intended user(s) and groups with

access. File permissions can disallow unintended access from applications

beyond Open OnDemand.

▪ Restrict SSH access to only authorized users and required HPC hosts; encourage

to use SSH authorization keys instead of passwords. Restricting SSH access is

crucial for maintaining the security of your HPC, especially when users are

accessing systems through a web interface.

▪ Implementing monitoring and logging is critical for maintaining system

performance, diagnosing issues, and auditing activities. Regular security and

compliance audits.

▪ Use MOTD & portal announcements for user guidance.

▪ Use /etc/ood/config/ondemand.d/global_bc_items.yml to define

common interactive application form items. For example, it is likely that all

applications will share the same partition definitions. To avoid copy/paste of the

same form values, the partitions can be defined globally as

global_bc_form_items:
 global_partitions:
 widget:"select"
 options:
 -[
 "normal",
 "normal",
 data-max-bc-num-hours-for-cluster-dirac:240,
 data-max-bc-num-hours-for-cluster-feynman:8
]

then, in the interactive app form:

form:
 -global_partitions

▪ Interactive application form options should be limited to what makes sense for

the given application. For example, an application like VSCode does not need to

run on a long-running partition or require a massive amount of RAM for it to

function properly.

▪ Create custom templates for common job types (e.g., MPI, GPU, serial) and store

the templates in /etc/ood/config/apps/myjobs/templates.

36spinTwo @ CARLA 2025

SUMMARY

Open OnDemand as an Integrator: Provides a unified portal for all HPC tools and resources

available in your organization.

Browser-Based HPC Access: Open OnDemand supports CLI and GUI users with full SSO,

interactive apps, file management, and messaging.

Interactive & Batch Applications: Launch CLI, GUI, and containerized apps with Slurm

integration.

Automation & Maintainability: Ansible and containerized apps simplify deployment and

maintenance of HPC environments.

Secure, Optimized Integration: Ensures secure HPC access, workflow support, and adherence

to best practices for scalable, user-friendly systems.

Open OnDemand provides secure, browser-based access to HPC resources, enabling interactive

applications, file management, and automated, maintainable deployments.

37

THANK YOU
Hugo Hernández – hugo@spintwo.com

https://spinTwo.com

The 2025 PASC Conference

	Slide 1: from the cli to the browser: open Ondemand Making HPC easy to access
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: thank you

